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Abstract

The interstellar medium (ISM) of galaxies is composed of a turbulent magnetized plasma. In order to quantitatively
measure relevant turbulent parameters of the ISM, a wide variety of statistical techniques and metrics have been
developed that are often tested using numerical simulations and analytic formalism. These metrics are typically
based on the Fourier power spectrum, which does not capture the Fourier phase information that carries the
morphological characteristics of images. In this work we use density slices of magnetohydrodynamic turbulence
simulations to demonstrate that a modern tool, convolutional neural networks, can capture significant information
encoded in the Fourier phases. We train the neural network to distinguish between two simulations with different
levels of magnetization. We find that, even given a tiny slice of simulation data, a relatively simple network can
distinguish sub-Alfvénic (strong magnetic field) and super-Alfvénic (weak magnetic field) turbulence >98% of the
time, even when all spectral amplitude information is stripped from the images. In order to better understand how
the neural network is picking out differences between the two classes of simulations we apply a neural network
analysis method called “saliency maps.” The saliency map analysis shows that sharp ridge-like features are a
distinguishing morphological characteristic in such simulations. Our analysis provides a way forward for deeper
understanding of the relationship between magnetohydrodynamic turbulence and gas morphology and motivates
further applications of neural networks for studies of turbulence. We make publicly available all data and software
needed to reproduce our results.

Unified Astronomy Thesaurus concepts: Interstellar magnetic fields (845); Computational methods (1965)

1. Introduction

Magnetohydrodynamic (MHD) turbulence is now part of the
established paradigm of the interstellar medium (ISM) of
galaxies and can influence the behavior of gas and dust over
scales ranging from beyond a kiloparsec to below astronomical
unit (Armstrong et al. 1995; Elmegreen & Scalo 2004;
Lazarian 2007; Burkhart 2014). MHD turbulence is understood
to be important for fundamental astrophysical processes
including star formation, galactic pressure support, the
transport of heat and metals, formation of molecular hydrogen,
the acceleration and diffusion of cosmic rays, and the structure
of magnetic field lines (Lazarian & Vishniac 1999; Mac Low &
Klessen 2004; Lazarian 2006; Yan 2009; Burkhart et al. 2010;
Burkhart & Lazarian 2012; Federrath & Klessen 2012; Bialy
et al. 2017; Pingel et al. 2018).

Despite the importance of MHD turbulence for galactic
processes, it is difficult to devise metrics that can accurately
characterize plasma fluid properties from astronomical obser-
vations. MHD turbulence is notoriously difficult to study, even
in a controlled laboratory setting (Nornberg et al. 2006; Bayliss
et al. 2007) and even more challenging to quantify and
understand when dealing with line-of-sight (LOS) effects,
radiative transfer, and telescope beam smearing (Hill et al.
2008; Burkhart et al. 2013a; Offner et al. 2014; Koch et al.
2019). In light of these challenges, direct numerical simulations
of turbulence have been critical for our understanding of the
physical conditions and statistical properties of MHD turbu-
lence in astrophysical environments (Cho et al. 2002; Mac Low
& Klessen 2004; Ballesteros-Paredes & Hartmann 2007;

Kowal & Lazarian 2007; McKee & Ostriker 2007; Federrath
et al. 2008; Burkhart et al. 2009; Collins et al. 2012).
Numerical MHD turbulence simulations generally can resem-
ble observations in terms of the scaling of the power spectrum
and the overall density structure (e.g., filaments). However
numerical simulations of turbulence lack the spatial dynamic
range of the real ISM and therefore cannot reach the observed
Reynolds numbers of nature. The Reynolds number (Re

1 2) is
the ratio of the large eddy turnover rate to the viscous
dissipation rate. Therefore, large Re correspond to negligible
viscous dissipation of large eddies over the eddy turnover time
and simulations are therefore too viscous, usually due to
numerical viscosity. However, the statistical properties of the
ISM, including the density histogram (or PDF; Vazquez-
Semadeni et al. 1997; Burkhart et al. 2009, 2015, 2017;
Federrath et al. 2009; Kainulainen et al. 2009; Burkhart &
Lazarian 2012; Chen et al. 2018), velocity/density power
spectrum (Stanimirovic et al. 1999; Lazarian & Pogosyan 2000;
Stanimirović et al. 2004; Lazarian & Pogosyan 2008; Burkhart
et al. 2010, 2013b; Chepurnov et al. 2015; Pingel et al. 2018),
three-point functions/phase analysis (Burkhart et al. 2009;
Burkhart & Lazarian 2016; Portillo et al. 2018; Koch et al.
2019), and principle component analysis (Heyer &
Brunt 2004, 2012; Yuen et al. 2018), are well represented by
MHD turbulence simulations. Therefore, statistical studies may
be the current best method for understanding the properties of
turbulence and for connecting observations and numerical
simulations.
The most common statistical tool of turbulence studies for

nearly a century has been the spatial or temporal Fourier power
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spectrum. This is because the power spectrum enables the
examination of the turbulence energy cascade as a function
scale or frequency and can reveal the sources (injection scale)
and sinks (dissipation scale) of energy and the self-similar
behavior of the inertial range scaling. Furthermore, the power
spectrum of ISM density and LOS Doppler-shifted velocity can
inform on the spatial and kinematic scaling of turbulence and
sonic Mach number (Lazarian & Pogosyan 2004, 2006; Kowal
& Lazarian 2007; Goodman et al. 2009; Heyer et al. 2009;
Burkhart et al. 2010, 2014; Collins et al. 2012; Chepurnov et al.
2015; Koch et al. 2019).
The power spectrum is defined as

( ) ˜( ) · ˜ ( ) ( )å=P k F k F k 1
k

*

where k is the wavenumber and ˜( )F k is the Fourier transform of
the field under study, e.g., density, velocity, magnetic energy,
etc.

Equation (1) demonstrates a critical limitation of the Fourier
power spectrum: it contains only the Fourier amplitudes and
neglects the Fourier phases. This is problematic for studies of
MHD turbulence because interactions among MHD waves can
produce correlations in Fourier phases that are completely
missed by the power spectrum (Burkhart & Lazarian 2016).
The structure imprinted on the phase information will be
entirely lost to a power spectral analysis. Furthermore, the
degree of phase coherence or randomness in MHD turbulence
is important for MHD wave–wave interactions and particle
transport. In order to study both phase and amplitude
information a number of statistics beyond the power spectrum
have been proposed for ISM studies, including the three-point
correlation function or bispectrum (Burkhart et al. 2009;
Portillo et al. 2018) and the phase coherence (Burkhart &
Lazarian 2016). Additional statistical tools and methodologies
for studies of turbulence have been developed in the last several
decades and include course graining (Aluie 2017; Eyink &
Drivas 2018; Bian & Aluie 2019), higher-order moments
(Kowal & Lazarian 2007; Burkhart et al. 2009, 2010; Gaensler
et al. 2011), wavelets (Kowal & Lazarian 2010; Farge &
Schneider 2015; Le et al. 2018), topological techniques (Kowal
& Lazarian 2007; Chepurnov et al. 2008; Burkhart et al. 2012),
clump and hierarchical structure finders (Rosolowsky et al.
2008; Goodman et al. 2009; Burkhart et al. 2013a), Tsallis
distributions (Esquivel & Lazarian 2011; Tofflemire et al.
2011), and structure functions as tests of intermittency and
anisotropy (She & Leveque 1994; Cho & Lazarian 2003;
Esquivel & Lazarian 2005; Kowal & Lazarian 2010; Burkhart
et al. 2014; Verdini et al. 2015; Hellinger et al. 2018; Bian &
Aluie 2019). While these tools have been successful at
obtaining some of the turbulence parameters such as the
driving scale and sonic Mach number, they are less adept at
obtaining magnetic field information that might be encoded in
the phases and are somewhat difficult to interpret physically.

A generic problem in studying the phase content of images is
that there is no single metric that encompasses all the
information, and thus feature vectors must be constructed “by
hand,” informed either by our best theoretical understanding of
the underlying processes or by observations that clue us in to
important morphological properties (e.g., Clark et al. 2014) or
are otherwise difficult to glean physical meaning from, such as
the bispectrum (Burkhart et al. 2010). Nevertheless, the phase
information is crucial for reproducing images with content that

is understandable by humans. For example, Oppenheim & Lim
(1981) showed that preserving the phase in an image, but
scrambling or distorting the power, generated images that are
comprehensible to the human eye, but preserving the power
and distorting the phase led to incomprehensible images. This
result gives us the intuition that a tool or statistic that can
distinguish between visually distinct structures may be able to
tap into the information locked up in the Fourier phases.
Tools that mimic the human capacity to distinguish between

physically and semantically different scenes have long been the
goal of Computer Vision and Machine Vision. These
disciplines have tended to build up semantic information from
low-level, custom-built feature vectors from segmented images
into ever more complex scene analysis tools (e.g., Sonka et al.
2008). The rise of neural networks, deep learning, and, in
particular, convolutional neural networks (CNNs), has com-
pletely revolutionized our ability to extract semantic informa-
tion from images and upended the computer vision paradigm
(see e.g., LeCun et al. 2015, for a broad overview). CNNs
allow for hierarchical feature extraction without any custom
feature vectors, and as such they can be used for astronomical
images as easily as other images. Indeed, more than 40 papers
have been published using CNNs in the astronomical literature
in 2018, twice the number in all previous years combined.
While many of these articles are exploratory in nature, a fair
number report increased speed and/or increased accuracy over
previous methods.
A common complaint among physical scientists is that while

neural networks, and machine learning systems as a whole, can
accurately propagate labels and perform regressions, they
represent a “black box.” These systems often have millions of
fit parameters, and thus understanding what the system has
“learned” is far from trivial. In recent years, significant progress
has been made in extracting the knowledge built up by a neural
network by applying new analysis tools to understand the
network’s intuition (see e.g.,distill.pub). Understanding the
way neural networks operate in different physical contexts may
allow us to gain insight into how information is encoded in
astronomical images, and thereby build more powerful physical
theories.
In this work we demonstrate the power of CNNs for studies

of ISM turbulence in the absence of power spectral informa-
tion, i.e., just using the pure phase information. We take a
number of steps to remove information that is known to be
useful in the studies of magnetized turbulence in order to
demonstrate how CNNs can harness currently unknown aspects
of the information contained in images to measure the physics
of turbulence. We will show that we can detect changes in the
Alfvén Mach number without velocity information, histogram
information, the power spectrum, or stretched features along
the background magnetic field.
This Letter is organized as follows. In Section 2 we describe

the simulation data we use in the analysis. In Section 3 we
describe CNNs and the network architecture and methods we
use. In Section 4 we report our quantitative and qualitative
results. We discuss and conclude in Section 5.

2. Simulation Data

We use the database of 3D numerical simulations of
isothermal compressible (MHD) turbulence with resolution
5123 presented in a number of past works (Kowal et al. 2007;
Burkhart et al. 2009, 2013a). This database of simulations is
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part of the Catalog for Astrophysical Turbulence Simulations
(CATS; B. Burkhart et al. 2019, in preparation).5 We refer to
these works for the details of the numerical set-up and here
provide a short overview. The code is a third-order accurate
ENO scheme (Cho & Lazarian 2003) that solves the ideal
MHD equations in a periodic box with purely solenoidally
driving and uses an isothermal equation of state. We vary the
input values for the sonic Mach number (Ms=v/cs, where v is
the flow velocity and cs is the sound speed) and Alfvénic Mach
number (MA=v/vA, where vA is the Alfvén speed). The
magnetic field consists of the uniform background field and a
turbulent field, i.e.,: B=Bext+b. Initially, b=0 and the
initial density field is uniform.

We test the utility of neural networks for finding magnetic
field structure in density using snapshots of each of two
simulations at a resolution of 5123. The simulations have a
fixed sonic Mach number of Ms=7. There are two different
magnetic field values used in this investigation: MA≈0.7
(sub-Alfvénic) and MA≈2.0 (super-Alfvénic), otherwise the
simulations examined have identical parameters. We use four
snapshots from each simulation at 5, 5.5, 6, and 7 eddy
turnover times.

The sonic and Alfvénic Mach numbers are important control
parameters for simulations of MHD turbulence. They are also
related to the plasma β, i.e., the ratio of the thermal pressure
(Pthermal) to magnetic pressure (Pmag), which is defined as

b = P

P
thermal

mag
. The plasma β can be defined as b = M

M

2

s

A
2

2 . The sonic

Mach number can be measured directly from the LOS velocity
dispersion of spectral lines and measurements of temperature in
the ISM. However, because magnetic fields are difficult to
directly detect (Clark et al. 2012; Crutcher 2012; Soler et al.
2013; Lazarian et al. 2018), the Alfvénic Mach number is more
elusive. The simulation data used are available here: 10.7910/
DVN/UKOPY.

3. Method: CNNs

Our goal is to build a system that can distinguish between
simulations sub- and super-Alfvénic turbulence, and thereby
learn what information exists in the image plane about the
turbulence. To do this we use a CNN deployed with the Keras
and Tensorflow frameworks (Abadi et al. 2015; Chollet et al.
2015).
CNNs (also called convnets) are a subclass of neural

networks that have a specific limited connectivity, originally
patterned after the structure of the neural structure of the visual
processing structures in brains (Hubel & Wiesel 1962). They
were first made popular in the astronomical literature by
Dieleman et al. (2015), who used a CNN to reproduce visual
classifications of galaxy morphology.

A standard neural network is composed of neurons: a neuron
takes in some inputs and provides an output

⎛
⎝⎜

⎞
⎠⎟· ( )å=

=

y f x w , 2
i

d

i i
1

where xi is the input vector, wi are a set of trainable weights,
and f is some nonlinear, typically monotonically increasing,
activation function (e.g., LeCun et al. 2015). In this way a
network can be built up connecting the outputs of many

neurons on some layer j to many neurons on the next layer
j+1. A “fully connected layer” is a set of weights between
layers of neurons that connects all neurons on level j to level
j+1. A network will typically narrow, until the number of
final neurons is equal to the number of classes the network is
being designed to distinguish. The process of training a
network consists of providing labeled data to the network and
measuring the resultant class. If the class is incorrect the
weights are adjusted through back-propagation of error. In
most modern training scenarios a small subset of the training
data is presented to the network at a time, and the weights are
adjusted in a process called stochastic gradient descent.
A CNN departs from this standard structure by the

introduction of two extra layer types, convolutional layers
and pooling layers.6 If we construct our input as an M×M
image, a first convolutional layer would map each N×N sub-
patch of the image to a neuron in the next layer below with a
grid of weights wij. This in effect generates a convolution of the
image above. In practice many such convolutions would be
applied to the layer, represented by wij k, , thus mapping to a
M×M×K grid of neurons. A pooling layer decreases the
resolution of the image by only passing the maximum
activation of the neurons within a patch to the next layer.
Thus, by alternating pooling and convolutional layers, the grid
of neurons becomes smaller in the image plane and deeper in
the convolutional dimension until fully connected layers are
used at the end of the network. A more complete description of
CNNs appropriate for an astronomical audience can be found
in Section 5 of Dieleman et al. (2015).
CNNs take input images that typically go through a number

of preprocessing steps. Our preprocessing steps are designed
both to make the network effective, but also to strip out as
much information as possible that is not relevant to our study of
phase information (see Figure 1). To make images to start with
we extract 128×128 slices from the 512×512×512 grid
point density cubes perpendicular to the magnetic field.
Turbulent eddies are stretched along the magnetic axis
(Goldreich & Sridhar 1995; Lazarian & Vishniac 1999), and
therefore we slice across the magnetic field line axis in order to
avoid anisotropic effects on the density field. Each 512×512
plane is cut up into 16 images. We repeat this process across all
four snapshots, generating 16×512×4=32,768 for each of
the two simulations. Because the bounds of the simulation box
are periodic, the data cube can be displaced in x and y with
periodic bounds without injecting sharp edges into the data. In
order to present the largest number of uncorrelated images to
the network, we shift our box by 64 grid points in x and
separately in y before again extracting the 16 images for each
consecutive slice along z. This technique of “data enhance-
ment” is common in neural network training, and yields 32,768
images per cube, or 131,072 per simulation. We perform this
procedure on the density cubes for each of the four snapshots
for both the super-Alfvénic and sub-Alfvénic simulations. The
data from the first three snapshots comprise the training data,
while the data from the last snapshot comprises the test data.
We use the last snapshot as the test data because it is a full eddy
turnover time from the training snapshots, and thus provides a
largely independent test. The image pixel values are scaled by a
base 10 logarithm.

5 More information on the CATS project can be found at www.
mhdturbulence.com.

6 See https://cs231n.github.io/convolutional-networks/ for a discussion.
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In addition to this we make a separate, parallel data set using
the same methodology, but with an additional preprocessing
step. For each x–y slice of the cube we apply a fast Fourier
transform, and set the Fourier power to unity. We then return to
the image domain through an inverse fast Fourier transform.
Thus, all the images for this fixed Fourier power (FFP) training
and test set have no power spectral information.

Lastly, we perform histogram equalization using the
exposure method from sci-kit-image (van der Walt et al.
2014), such that each image has a roughly equal distribution of
values from 0 to 1. This is a common preprocessing technique

deployed here mainly for the purpose of optimizing the CNN
computationally, but it also destroys all information that may
be encoded in the pixel amplitude histogram (often called a
probability distribution function (PDF) in the ISM literature).
For a turbulent density field this PDF should be close to
lognormal (Vazquez-Semadeni 1994; Padoan et al. 1997; Scalo
et al. 1998; Federrath et al. 2008; Burkhart et al. 2009). The
procedure is diagrammed in Figure 1; example images are
shown in Figure 2.
We use a relatively simple CNN, based on an example CNN

architecture provided with the Keras package (Chollet et al.
2015), for distinguishing the MNIST set of handwritten digits
(LeCun et al. 1998). In this architecture pairs of deep
convolutional layers are alternated with pooling layers.
Dropout, a commonly used method that leaves randomly
selected neurons out of the training process, is applied to the
pooling layers to reduce overfitting (Srivastava et al. 2014).
This sequence is repeated three times until resultant 9216
neurons can be connected in a dense layer to 512 neurons (see
Figure 3). Dropout is also applied to this layer, which leads to
the final two classes of neurons: one neuron for sub-Alfvénic
turbulence, one for super-Alfvénic turbulence. Overall there are
4858,978 trainable weights in the network. Neuron activation
functions were rectified linear units, ( ) ( )=f x xmax 0, , except
the final layer, which was softmax (i.e., a normalized
exponential function):

( ) ( )s =
S =

z
e

e
. 3i

z

j
z

1
2

i

j

Loss was computed by categorical cross-entropy and
adadelta (Zeiler 2012) was used for optimization. Adadelta is
an optimizer that adjusts learning rates adaptively based on the
updates to network gradients. At present it is a typical choice
for a network optimizer. The network was trained using batch
sizes of 128 images with 12 total epochs (i.e., runs through the
full training set).
Deep learning protocols typically reserve a portion of the

data as “validation” data, and a portion of data as “test” data in
addition to the training data. The validation data is used to
determine how well the network can perform against data that it
has not seen before. Because a network has many hyperpara-
meters—many layers, many optimizer choices, many activation
options, etc.—“test” data are also set aside to remediate the
effects overfitting through so-called hyperparameter tuning. In
this work we did not perform any hyperparameter tuning. The
network was modified from the original example network only
to make it capable of handling larger 128×128 pixel images.
This is because the purpose of this work is not to produce the
best possible network for later classification purposes, but
rather to determine what information exists, and where it exists,
in the images of the simulation available to even a simple
network. Our goal is to understand whether and how the CNN
is picking up information between two classes of simulations,
not to perfect the network. Thus, in this work we have only set
aside one set of data, which we call the “test” data.
We further explored these data using a method called

“saliency maps,” developed in Simonyan et al. (2013). Simply
put, the saliency associated with each pixel in each image is the
derivative of the (correct) classification with respect to the pixel
amplitude. The purpose of the method is to determine which
parts of each image contributes most to its classification, thus
allowing us to build intuition about what features in an image

Figure 1. Preprocessing steps for the data. Each slice of each simulation data
cube is split into 16 128×128 grid point regions and extracted as an image.
We then take the logarithm of the image pixels. These images are then split into
two groups, one is left as is, the other is then run through the “Fixed Fourier
Power” procedure. Then both sets of images are histogram equalized.
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contain the physical underlying information that the network is
seizing upon, or whether the network is focused on spurious
information. A short exploration confirmed previous work that
“guided back-propagation” (Springenberg et al. 2014) gives the
sharpest saliency maps, relatively free of network architecture-
induced artifacts. All of the code necessary to extract the
images from the simulations, normalize them, build the

networks, train the networks, test the networks, and generate
figures with data can be found here: 10.5281/zenodo.2658177

4. Results

The networks were trained on both the normal and FFP data
sets in 15 minutes apiece on a 16 CPU compute node with
60 GB of RAM with an NVIDIA Tesla P100 GPU deployed on

Figure 2. Images of example slices. The left two columns are drawn from simulations of sub-Alfvénic turbulence, and the right two columns from super-Alfvénic
turbulence. All images are histogram equalized. The second and fourth column have had their power spectra flattened to fixed Fourier power (FFP). The five rows are
randomly selected from the data set of 2048 test images.
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the Google Compute Engine. The final test accuracy of the
network trained on normal images was 97.94%, and the final
test accuracy of the network trained on FFP images was
99.50%. We also performed a secondary test, using training
data from only one cube and test data from the other. The code
continued to perform well, even with half the training data and
achieved a final test accuracy of 95.25%.

While we did not engage in a hyperparameter space search,
we did find interesting results regarding the networks and
training of the CNN. We found that FFP data took much longer
to train, and spent many training epochs with very little
decrease in loss function or increase in accuracy on the training
data, before rapidly finding a much deeper minimum on the
parameter space. Depending on the random seed, we find the
network can take many epochs to converge trained on FFP
images. We expect that this relates to the fact that these images
do not have the hierarchy of scales that CNNs are designed to
capture. This is to say, the large-scale (small wavenumber)
power has been removed from these images, which makes the
CNN less efficient. We urge caution in working with FFP data
and CNNs, as we do not yet fully understand what causes the
network to converge or fail. We also note that in initial
exploratory tests we had degraded the image resolution
significantly to speed our analysis, which resulted in sig-
nificantly worse performance in both normal and FFP analyses.
We expect that this is due to the fact that small-scale features
are important to distinguish the super-Alfvénic and sub-
Alfvénic scenarios. Both trained networks, in the model format
readable by keras, can be found here: 10.7910/DVN/UKOPY.

An example of 18 randomly selected super-Alfvénic and 18
sub-Alfvénic sub-images and their associated saliency maps are
shown in Figure 4. The saliency map is shown as a single red
contour over the image in grayscale. We find that the saliency
map very clearly highlights the sharp, ridge-like features in the
images in the super-Alfvénic case. Conversely, the saliency
maps for the sub-Alfvénic case highlight dark regions on the
edge of bright regions, implying that softening these sharper
edges would enhance the sub-Alfvénic label confidence. These
features highlight how the CNN is distinguishing between the
classes of models.

In the test case that we explore here (sub-Alfvénic versus
super-Alfvénic turbulence), the magnetic field produces
fluctuations in the density field that can be anisotropic in the
case of strong sub-Alfvénic turbulence and more isotropic for
super-Alfvénic turbulence. However, because we take slices
that are perpendicular to the mean magnetic field, we are
sensitive only to density fluctuations produced by the local
magnetic field and not the large-scale mean field anisotropy.
The CNN is able to distinguish the local magnetic field
fluctuations even after removal of the large-scale power and
histogram information. This is an unique success for the CNN,
as other statistical tools used for magnetic field studies, such as

correlation functions, are only sensitive to global magnetic
anisotropy (Burkhart et al. 2014).

5. Discussion and Conclusions

The trained networks were able to tell sub-Alfvénic versus
super-Alfvénic simulations apart with ∼98% accuracy when
presented only a single 128×128 image, ∼0.01% of the entire
simulation volume. These networks were presented with no
velocity information, no PDF information, and, in the case of
the FFP data sets, no power spectral information. The only
information available was embedded in the Fourier phase
domain. This experiment has shown that there is a large
amount of valuable information in Fourier phase space not
available to techniques that rely on the power spectrum alone.
These results allow two new avenues for using neural

networks. Conservatively, neural networks provide a strong
lower bound on the amount of information about the physical
system contained in the image plane. By running a neural
network we can determine that there is more information
available than is being captured by a given metric if the neural
network is easily able to distinguish between the data sets. This
can provide encouragement to find more powerful analytic
metrics. More speculatively, when trained on much more
realistic simulations, one could use these CNNs to determine
the underlying physical parameters of the ISM. We caution
against taking this approach wholesale, without significant
caveats. At present, numerical simulations are limited in their
ability to reproduce observations of complex ISM structures
and substructures, in terms of the physics captured, the
resolution achievable, the accuracy of synthetic imaging, and
our understanding of initial conditions relevant to a given ISM
domain. We have shown that in some cases metrics derived
from analytics have much less statistical power than CNNs, but
they have the distinct advantage of being motivated by
theoretical expectations from the physics of the system. Thus
it is much easier to quantify in what ways these metrics may be
biased, or what confounding factors may occur.
We recommend that CNNs and other deep and machine

learning techniques trained directly on pixel-level data be used
to measure the observed ISM in parallel with analytically
based methods like power spectra. If the two methods agree on
the underpinning physical parameters like driving scale, sonic
Mach number, and Alfvénic Mach number, one can have much
more confidence in the result. In principle, our method of
scraping out information can be extended, such that the image
information fed to the CNN is entirely separate from the
information in the analytically based metrics. Such a scenario
would give two fully independent measures of the parameters
of interest. If these independent metrics gave significantly
different answers, this would give a researcher pause in
declaring that they had successfully measured a given

Figure 3. Architecture of the neural network used.

6

The Astrophysical Journal Letters, 882:L12 (8pp), 2019 September 1 Peek & Burkhart

https://doi.org/10.7910/DVN/UKOPYP


parameter without determining what systematic uncertainties or
biases might be impacting one metric or the other.

Finally, our saliency analysis has shown that neural networks
can be very powerful in providing intuition for where in the
image plane phase information is most distinguishing between
different classifications. In the work described here, we found
that thin, ridge-like features are the main discriminator that the
network uses to determine the magnetization of the simulation.
In future, these kinds of experiments could allow us to develop
a better understanding of how different turbulent systems
manifest in the image plane. Extrapolating further, saliency can
be used with any observational data as well, allowing
astronomers to better understand what morphological char-
acteristics (e.g., spiral arm shapes) correlate with what physical
characteristics (e.g., star formation rate).

B.B. acknowledges the generous support of the Center for
Computational Astrophysics in the Flatiron Institute. This work
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with Google Compute Engine. This project made use of
Numpy van der Walt et al. (2011) and Astropy (Astropy
Collaboration et al. 2013; Collaboration et al. 2018).
Software: Numpy, astropy.

Figure 4. Images of 18 randomly selected slices from sub-Alfvénic turbulence simulations (left) and 18 from super-Alfvénic turbulence simulations (right). A contour
of the saliency map for each image at a saliency of 200 is shown in red. On the left we see that the network would find even higher confidence in the sub-Alfvénic
turbulence label if the dark regions on the boundaries of bright regions were enhanced, thus it is using the smoothness of these boundaries as a marker of sub-Alfvénic
turbulence. Conversely, on the right, we see the network would be even more confident in the super-Alfvénic label if the brightness of sharp, thin density ridges were
enhanced. These maps provide a way to understand how the network has learned to label these images, and where the distinguishing morphological information is in
the images.

7

The Astrophysical Journal Letters, 882:L12 (8pp), 2019 September 1 Peek & Burkhart



ORCID iDs

J. E. G. Peek https://orcid.org/0000-0003-4797-7030
Blakesley Burkhart https://orcid.org/0000-0001-5817-5944

References

Abadi, M., Agarwal, A., Barham, P., et al. 2015, TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems, software available from
tensorflow.org/

Aluie, H. 2017, NJPh, 19, 025008
Armstrong, J. W., Rickett, B. J., & Spangler, S. R. 1995, ApJ, 443, 209
Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A,

558, A33
Ballesteros-Paredes, J., & Hartmann, L. 2007, RMxAA, 43, 123
Bayliss, R. A., Forest, C. B., Nornberg, M. D., Spence, E. J., & Terry, P. W.

2007, PhRvE, 75, 026303
Bialy, S., Burkhart, B., & Sternberg, A. 2017, ApJ, 843, 92
Bian, X., & Aluie, H. 2019, PhRvL, 122, 135101
Burkhart, B., Falceta-Gonçalves, D., Kowal, G., & Lazarian, A. 2009, ApJ,

693, 250
Burkhart, B., & Lazarian, A. 2012, ApJL, 755, L19
Burkhart, B., & Lazarian, A. 2016, ApJ, 827, 26
Burkhart, B., Lazarian, A., & Gaensler, B. M. 2012, ApJ, 749, 145
Burkhart, B., Lazarian, A., Goodman, A., & Rosolowsky, E. 2013a, ApJ,

770, 141
Burkhart, B., Lazarian, A., Leão, I. C., de Medeiros, J. R., & Esquivel, A.

2014, ApJ, 790, 130
Burkhart, B., Lazarian, A., Ossenkopf, V., & Stutzki, J. 2013b, ApJ, 771, 123
Burkhart, B., Lee, M. Y., Murray, C., & Stanimirovic, S. 2015, ApJ, 811, 28
Burkhart, B., Stalpes, K., & Collins, D. C. 2017, ApJL, 834, L1
Burkhart, B., Stanimirović, S., Lazarian, A., & Kowal, G. 2010, ApJ,

708, 1204
Burkhart, B. K. 2014, PhD thesis, The Univ. Wisconsin—Madison
Chen, H. H.-H., Burkhart, B., Goodman, A., & Collins, D. C. 2018, ApJ,

859, 162
Chepurnov, A., Burkhart, B., Lazarian, A., & Stanimirovic, S. 2015, ApJ,

810, 33
Chepurnov, A., Gordon, J., Lazarian, A., & Stanimirovic, S. 2008, ApJ,

688, 1021
Cho, J., & Lazarian, A. 2003, MNRAS, 345, 325
Cho, J., Lazarian, A., & Vishniac, E. T. 2002, ApJ, 564, 291
Chollet, F. 2015, Keras, https://keras.io
Clark, P. C., Glover, S. C. O., Klessen, R. S., & Bonnell, I. A. 2012, MNRAS,

424, 2599
Clark, S. E., Peek, J. E. G., & Putman, M. E. 2014, ApJ, 789, 82
Collaboration, A., Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, AJ,

156, 123
Collins, D. C., Kritsuk, A. G., Padoan, P., et al. 2012, ApJ, 750, 13
Crutcher, R. M. 2012, ARA&A, 50, 29
Dieleman, S., Willett, K. W., & Dambre, J. 2015, MNRAS, 450, 1441
Elmegreen, B. G., & Scalo, J. 2004, ARA&A, 42, 211
Esquivel, A., & Lazarian, A. 2005, ApJ, 631, 320
Esquivel, A., & Lazarian, A. 2011, ApJ, 740, 117
Eyink, G. L., & Drivas, T. D. 2018, PhRvX, 8, 011023
Farge, M., & Schneider, K. 2015, JPlPh, 81, 435810602
Federrath, C., & Klessen, R. S. 2012, ApJ, 761, 156
Federrath, C., Klessen, R. S., & Schmidt, W. 2008, ApJL, 688, L79
Federrath, C., Klessen, R. S., & Schmidt, W. 2009, ApJ, 692, 364
Gaensler, B. M., Haverkorn, M., Burkhart, B., et al. 2011, Natur, 478, 214
Goldreich, P., & Sridhar, S. 1995, ApJ, 438, 763
Goodman, A. A., Rosolowsky, E. W., Borkin, M. A., et al. 2009, Natur,

457, 63

Hellinger, P., Verdini, A., Landi, S., Franci, L., & Matteini, L. 2018, ApJL,
857, L19

Heyer, M., Krawczyk, C., Duval, J., & Jackson, J. M. 2009, ApJ, 699, 1092
Heyer, M. H., & Brunt, C. M. 2004, ApJL, 615, L45
Heyer, M. H., & Brunt, C. M. 2012, MNRAS, 420, 1562
Hill, A. S., Benjamin, R. A., Kowal, G., et al. 2008, ApJ, 686, 363
Hubel, D. H., & Wiesel, T. N. 1962, The Journal of Physiology, 160, 106
Kainulainen, J., Beuther, H., Henning, T., & Plume, R. 2009, A&A, 508, L35
Koch, E. W., Rosolowsky, E. W., Boyden, R. D., et al. 2019, AJ, 158, 1
Kowal, G., & Lazarian, A. 2007, ApJL, 666, L69
Kowal, G., & Lazarian, A. 2010, ApJ, 720, 742
Kowal, G., Lazarian, A., & Beresnyak, A. 2007, ApJ, 658, 423
Lazarian, A. 2006, ApJL, 645, L25
Lazarian, A. 2007, JQSRT, 106, 225
Lazarian, A., & Pogosyan, D. 2000, ApJ, 537, 720
Lazarian, A., & Pogosyan, D. 2004, ApJ, 616, 943
Lazarian, A., & Pogosyan, D. 2006, ApJ, 652, 1348
Lazarian, A., & Pogosyan, D. 2008, ApJ, 686, 350
Lazarian, A., & Vishniac, E. T. 1999, ApJ, 517, 700
Lazarian, A., Yuen, K. H., Ho, K. W., et al. 2018, ApJ, 865, 46
Le, A., Roytershteyn, V., Karimabadi, H., et al. 2018, PhPl, 25, 122310
LeCun, Y., Bengio, Y., & Hinton, G. 2015, Natur, 521, 436
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. 1998, IEEEP, 86, 2278
Mac Low, M.-M., & Klessen, R. S. 2004, RvMP, 76, 125
McKee, C. F., & Ostriker, E. C. 2007, ARA&A, 45, 565
Nornberg, M. D., Spence, E. J., Kendrick, R. D., Jacobson, C. M., &

Forest, C. B. 2006, PhRvL, 97, 044503
Offner, S. S. R., Clark, P. C., Hennebelle, P., et al. 2014, in Protostars and

Planets VI, ed. H. Beuther et al. (Tucson, AZ: Univ. Arizona Press), 53
Oppenheim, A. V., & Lim, J. S. 1981, IEEEP, 69, 529
Padoan, P., Nordlund, A., & Jones, B. J. T. 1997, MNRAS, 288, 145
Pingel, N. M., Lee, M.-Y., Burkhart, B., & Stanimirović, S. 2018, ApJ,

856, 136
Portillo, S. K. N., Slepian, Z., Burkhart, B., Kahraman, S., & Finkbeiner, D. P.

2018, ApJ, 862, 119
Rosolowsky, E. W., Pineda, J. E., Foster, J. B., et al. 2008, ApJS, 175, 509
Scalo, J., Vazquez-Semadeni, E., Chappell, D., & Passot, T. 1998, ApJ,

504, 835
She, Z.-S., & Leveque, E. 1994, PhRvL, 72, 336
Simonyan, K., Vedaldi, A., & Zisserman, A. 2013, arXiv:1312.6034
Soler, J. D., Hennebelle, P., Martin, P. G., et al. 2013, ApJ, 774, 128
Sonka, M., Hlavac, V., & Boyle, R. 2008, Image Processing, Analysis and

Machine Vision (Berlin: Springer)
Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. 2014,

arXiv:1412.6806
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.

2014, Journal of Machine Learning Research, 15, 1929
Stanimirovic, S., Staveley-Smith, L., Dickey, J. M., Sault, R. J., &

Snowden, S. L. 1999, MNRAS, 302, 417
Stanimirović, S., Staveley-Smith, L., & Jones, P. A. 2004, ApJ, 604, 176
Tofflemire, B. M., Burkhart, B., & Lazarian, A. 2011, ApJ, 736, 60
van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, CSE, 13, 22
van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., et al. 2014, PeerJ,

2, e453
Vazquez-Semadeni, E. 1994, ApJ, 423, 681
Vazquez-Semadeni, E., Ballesteros-Paredes, J., & Rodriguez, L. F. 1997, ApJ,

474, 292
Verdini, A., Grappin, R., Hellinger, P., Landi, S., & Müller, W. C. 2015, ApJ,

804, 119
Yan, H. 2009, MNRAS, 397, 1093
Yuen, K. H., Chen, J., Hu, Y., et al. 2018, ApJ, 865, 54
Zeiler, M. D. 2012, arXiv:1212.5701

8

The Astrophysical Journal Letters, 882:L12 (8pp), 2019 September 1 Peek & Burkhart

https://orcid.org/0000-0003-4797-7030
https://orcid.org/0000-0003-4797-7030
https://orcid.org/0000-0003-4797-7030
https://orcid.org/0000-0003-4797-7030
https://orcid.org/0000-0003-4797-7030
https://orcid.org/0000-0003-4797-7030
https://orcid.org/0000-0003-4797-7030
https://orcid.org/0000-0003-4797-7030
https://orcid.org/0000-0001-5817-5944
https://orcid.org/0000-0001-5817-5944
https://orcid.org/0000-0001-5817-5944
https://orcid.org/0000-0001-5817-5944
https://orcid.org/0000-0001-5817-5944
https://orcid.org/0000-0001-5817-5944
https://orcid.org/0000-0001-5817-5944
https://orcid.org/0000-0001-5817-5944
http://tensorflow.org/
https://doi.org/10.1088/1367-2630/aa5d2f
https://ui.adsabs.harvard.edu/abs/2017NJPh...19b5008A/abstract
https://doi.org/10.1086/175515
https://ui.adsabs.harvard.edu/abs/1995ApJ...443..209A/abstract
https://doi.org/10.1051/0004-6361/201322068
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A/abstract
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A/abstract
https://ui.adsabs.harvard.edu/abs/2007RMxAA..43..123B/abstract
https://doi.org/10.1103/PhysRevE.75.026303
https://ui.adsabs.harvard.edu/abs/2007PhRvE..75b6303B/abstract
https://doi.org/10.3847/1538-4357/aa7854
https://ui.adsabs.harvard.edu/abs/2017ApJ...843...92B/abstract
https://doi.org/10.1103/PhysRevLett.122.135101
https://ui.adsabs.harvard.edu/abs/2019PhRvL.122m5101B/abstract
https://doi.org/10.1088/0004-637X/693/1/250
https://ui.adsabs.harvard.edu/abs/2009ApJ...693..250B/abstract
https://ui.adsabs.harvard.edu/abs/2009ApJ...693..250B/abstract
https://doi.org/10.1088/2041-8205/755/1/L19
https://ui.adsabs.harvard.edu/abs/2012ApJ...755L..19B/abstract
https://doi.org/10.3847/0004-637X/827/1/26
https://ui.adsabs.harvard.edu/abs/2016ApJ...827...26B/abstract
https://doi.org/10.1088/0004-637X/749/2/145
https://ui.adsabs.harvard.edu/abs/2012ApJ...749..145B/abstract
https://doi.org/10.1088/0004-637X/770/2/141
https://ui.adsabs.harvard.edu/abs/2013ApJ...770..141B/abstract
https://ui.adsabs.harvard.edu/abs/2013ApJ...770..141B/abstract
https://doi.org/10.1088/0004-637X/790/2/130
https://ui.adsabs.harvard.edu/abs/2014ApJ...790..130B/abstract
https://doi.org/10.1088/0004-637X/771/2/123
https://ui.adsabs.harvard.edu/abs/2013ApJ...771..123B/abstract
https://doi.org/10.1088/2041-8205/811/2/L28
https://ui.adsabs.harvard.edu/abs/2015ApJ...811L..28B/abstract
https://doi.org/10.3847/2041-8213/834/1/L1
https://ui.adsabs.harvard.edu/abs/2017ApJ...834L...1B/abstract
https://doi.org/10.1088/0004-637X/708/2/1204
https://ui.adsabs.harvard.edu/abs/2010ApJ...708.1204B/abstract
https://ui.adsabs.harvard.edu/abs/2010ApJ...708.1204B/abstract
https://doi.org/10.3847/1538-4357/aabaf6
https://ui.adsabs.harvard.edu/abs/2018ApJ...859..162C/abstract
https://ui.adsabs.harvard.edu/abs/2018ApJ...859..162C/abstract
https://doi.org/10.1088/0004-637X/810/1/33
https://ui.adsabs.harvard.edu/abs/2015ApJ...810...33C/abstract
https://ui.adsabs.harvard.edu/abs/2015ApJ...810...33C/abstract
https://doi.org/10.1086/591655
https://ui.adsabs.harvard.edu/abs/2008ApJ...688.1021C/abstract
https://ui.adsabs.harvard.edu/abs/2008ApJ...688.1021C/abstract
https://doi.org/10.1046/j.1365-8711.2003.06941.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.345..325C/abstract
https://doi.org/10.1086/324186
https://ui.adsabs.harvard.edu/abs/2002ApJ...564..291C/abstract
https://keras.io
https://doi.org/10.1111/j.1365-2966.2012.21259.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.424.2599C/abstract
https://ui.adsabs.harvard.edu/abs/2012MNRAS.424.2599C/abstract
https://doi.org/10.1088/0004-637X/789/1/82
https://ui.adsabs.harvard.edu/abs/2014ApJ...789...82C/abstract
https://doi.org/10.3847/1538-3881/aabc4f
https://ui.adsabs.harvard.edu/abs/2018AJ....156..123A/abstract
https://ui.adsabs.harvard.edu/abs/2018AJ....156..123A/abstract
https://doi.org/10.1088/0004-637X/750/1/13
https://ui.adsabs.harvard.edu/abs/2012ApJ...750...13C/abstract
https://doi.org/10.1146/annurev-astro-081811-125514
https://ui.adsabs.harvard.edu/abs/2012ARA&A..50...29C/abstract
https://doi.org/10.1093/mnras/stv632
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.1441D/abstract
https://doi.org/10.1146/annurev.astro.41.011802.094859
https://ui.adsabs.harvard.edu/abs/2004ARA&A..42..211E/abstract
https://doi.org/10.1086/432458
https://ui.adsabs.harvard.edu/abs/2005ApJ...631..320E/abstract
https://doi.org/10.1088/0004-637X/740/2/117
https://ui.adsabs.harvard.edu/abs/2011ApJ...740..117E/abstract
https://doi.org/10.1103/PhysRevX.8.011023
https://ui.adsabs.harvard.edu/abs/2018PhRvX...8a1023E/abstract
https://doi.org/10.1017/S0022377815001075
https://ui.adsabs.harvard.edu/abs/2015JPlPh..81f4302F/abstract
https://doi.org/10.1088/0004-637X/761/2/156
https://ui.adsabs.harvard.edu/abs/2012ApJ...761..156F/abstract
https://doi.org/10.1086/595280
https://ui.adsabs.harvard.edu/abs/2008ApJ...688L..79F/abstract
https://doi.org/10.1088/0004-637X/692/1/364
https://ui.adsabs.harvard.edu/abs/2009ApJ...692..364F/abstract
https://doi.org/10.1038/nature10446
https://ui.adsabs.harvard.edu/abs/2011Natur.478..214G/abstract
https://doi.org/10.1086/175121
https://ui.adsabs.harvard.edu/abs/1995ApJ...438..763G/abstract
https://doi.org/10.1038/nature07609
https://ui.adsabs.harvard.edu/abs/2009Natur.457...63G/abstract
https://ui.adsabs.harvard.edu/abs/2009Natur.457...63G/abstract
https://doi.org/10.3847/2041-8213/aabc06
https://ui.adsabs.harvard.edu/abs/2018ApJ...857L..19H/abstract
https://ui.adsabs.harvard.edu/abs/2018ApJ...857L..19H/abstract
https://doi.org/10.1088/0004-637X/699/2/1092
https://ui.adsabs.harvard.edu/abs/2009ApJ...699.1092H/abstract
https://doi.org/10.1086/425978
https://ui.adsabs.harvard.edu/abs/2004ApJ...615L..45H/abstract
https://doi.org/10.1111/j.1365-2966.2011.20142.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.420.1562H/abstract
https://doi.org/10.1086/590543
https://ui.adsabs.harvard.edu/abs/2008ApJ...686..363H/abstract
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1051/0004-6361/200913605
https://ui.adsabs.harvard.edu/abs/2009A&A...508L..35K/abstract
https://doi.org/10.3847/1538-3881/ab1cc0
https://ui.adsabs.harvard.edu/abs/2019AJ....158....1K/abstract
https://doi.org/10.1086/521788
https://ui.adsabs.harvard.edu/abs/2007ApJ...666L..69K/abstract
https://doi.org/10.1088/0004-637X/720/1/742
https://ui.adsabs.harvard.edu/abs/2010ApJ...720..742K/abstract
https://doi.org/10.1086/511515
https://ui.adsabs.harvard.edu/abs/2007ApJ...658..423K/abstract
https://doi.org/10.1086/505796
https://ui.adsabs.harvard.edu/abs/2006ApJ...645L..25L/abstract
https://doi.org/10.1016/j.jqsrt.2007.01.038
https://ui.adsabs.harvard.edu/abs/2007JQSRT.106..225L/abstract
https://doi.org/10.1086/309040
https://ui.adsabs.harvard.edu/abs/2000ApJ...537..720L/abstract
https://doi.org/10.1086/422462
https://ui.adsabs.harvard.edu/abs/2004ApJ...616..943L/abstract
https://doi.org/10.1086/508012
https://ui.adsabs.harvard.edu/abs/2006ApJ...652.1348L/abstract
https://doi.org/10.1086/591238
https://ui.adsabs.harvard.edu/abs/2008ApJ...686..350L/abstract
https://doi.org/10.1086/307233
https://ui.adsabs.harvard.edu/abs/1999ApJ...517..700L/abstract
https://doi.org/10.3847/1538-4357/aad7ff
https://ui.adsabs.harvard.edu/abs/2018ApJ...865...46L/abstract
https://doi.org/10.1063/1.5062853
https://ui.adsabs.harvard.edu/abs/2018PhPl...25l2310L/abstract
https://doi.org/10.1038/nature14539
https://ui.adsabs.harvard.edu/abs/2015Natur.521..436L/abstract
https://doi.org/10.1109/5.726791
https://doi.org/10.1103/RevModPhys.76.125
https://ui.adsabs.harvard.edu/abs/2004RvMP...76..125M/abstract
https://doi.org/10.1146/annurev.astro.45.051806.110602
https://ui.adsabs.harvard.edu/abs/2007ARA&A..45..565M/abstract
https://doi.org/10.1103/PhysRevLett.97.044503
https://ui.adsabs.harvard.edu/abs/2006PhRvL..97d4503N/abstract
https://ui.adsabs.harvard.edu/abs/2014prpl.conf...53O/abstract
https://ui.adsabs.harvard.edu/abs/1981IEEEP..69..529O/abstract
https://doi.org/10.1093/mnras/288.1.145
https://ui.adsabs.harvard.edu/abs/1997MNRAS.288..145P/abstract
https://doi.org/10.3847/1538-4357/aab34b
https://ui.adsabs.harvard.edu/abs/2018ApJ...856..136P/abstract
https://ui.adsabs.harvard.edu/abs/2018ApJ...856..136P/abstract
https://doi.org/10.3847/1538-4357/aacb80
https://ui.adsabs.harvard.edu/abs/2018ApJ...862..119P/abstract
https://doi.org/10.1086/524299
https://ui.adsabs.harvard.edu/abs/2008ApJS..175..509R/abstract
https://doi.org/10.1086/306099
https://ui.adsabs.harvard.edu/abs/1998ApJ...504..835S/abstract
https://ui.adsabs.harvard.edu/abs/1998ApJ...504..835S/abstract
https://doi.org/10.1103/PhysRevLett.72.336
https://ui.adsabs.harvard.edu/abs/1994PhRvL..72..336S/abstract
http://arxiv.org/abs/1312.6034
https://doi.org/10.1088/0004-637X/774/2/128
https://ui.adsabs.harvard.edu/abs/2013ApJ...774..128S/abstract
http://arxiv.org/abs/1412.6806
https://doi.org/10.1145/3065386
https://doi.org/10.1046/j.1365-8711.1999.02013.x
https://ui.adsabs.harvard.edu/abs/1999MNRAS.302..417S/abstract
https://doi.org/10.1086/381869
https://ui.adsabs.harvard.edu/abs/2004ApJ...604..176S/abstract
https://doi.org/10.1088/0004-637X/736/1/60
https://ui.adsabs.harvard.edu/abs/2011ApJ...736...60T/abstract
https://doi.org/10.1109/MCSE.2011.37
https://ui.adsabs.harvard.edu/abs/2011CSE....13b..22V/abstract
https://doi.org/10.7717/peerj.453
https://doi.org/10.1086/173847
https://ui.adsabs.harvard.edu/abs/1994ApJ...423..681V/abstract
https://doi.org/10.1086/303432
https://ui.adsabs.harvard.edu/abs/1997ApJ...474..292V/abstract
https://ui.adsabs.harvard.edu/abs/1997ApJ...474..292V/abstract
https://doi.org/10.1088/0004-637X/804/2/119
https://ui.adsabs.harvard.edu/abs/2015ApJ...804..119V/abstract
https://ui.adsabs.harvard.edu/abs/2015ApJ...804..119V/abstract
https://doi.org/10.1111/j.1365-2966.2009.15070.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.397.1093Y/abstract
https://doi.org/10.3847/1538-4357/aada88
https://ui.adsabs.harvard.edu/abs/2018ApJ...865...54Y/abstract
http://arxiv.org/abs/1212.5701

	1. Introduction
	2. Simulation Data
	3. Method: CNNs
	4. Results
	5. Discussion and Conclusions
	References



