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Abstract 
In this paper, an analytical and numerical study of strain fields, stress fields 
and displacements in a rotating hollow cylinder, whose walls were completely 
made in Functionally Graded Materials (FGM), was conducted. We have con-
sidered the rotating hollow cylinder submitted to an asymmetric radial load-
ing. It is assumed that, because of the functional graduation of the material, 
the mechanical properties such as Young elastic modulus and the density va-
ries in the radial direction, in accordance with a the power law function. The 
inhomogeneity parameter was selected between −1 and 1. On the basis of the 
second law of Newton, Hooke’s law and the strain-stress relationship, we es-
tablished the differential equation which governs the equilibrium for a rotat-
ing hollow cylinder. We found the analytical solution and compared to the 
numerical solution obtained by using the shooting method and the fourth or-
der Runge-Kutta algorithm. The analytical and numerical results lead to the 
conclusion that the magnitude of the tangential stresses is greater than that of 
the radial stresses. The changes due to the graduation of FGM does not pro-
duce consistent variations in the distribution of radial stresses, but strongly 
affects the distribution of tangential stresses. The tangential stresses, tangen-
tial strains and displacements are much higher at the inner surface of the cy-
linder wall. The internal radial pressure intensely affects the radial stresses and 
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1. Introduction 

Rotary devices such as disks, cylinders and even spheres have been widely used 
in mechanical applications and engineering including steam turbines and gas 
rotors, turbine generators and jet engines, internal combustion engines, boat 
propellers or even reciprocating and centrifugal compressors [1]-[15]. In such 
mechanical applications, the rotating hollow cylinder is often subject to different 
requirements with diverse characteristics. Some industrial demands require ma-
terials whose performance varies depending on space. It is difficult to find con-
ventional materials that simultaneously meet such requirements. The develop-
ment of “Functionally Graded Materials (FGM)” enabled to propose solutions to 
such problems. 

Indeed FGM is a new class of materials that has really emerged in the second 
half of the 90’s years. They are composite materials in which physical, chemical 
and mechanical properties vary continuously and which exhibit no discontinuity 
[1] [2] [7] [8] [9] [11]. The profile of variation of these properties depends on 
the area it is based and on a continual variation of their local composition as a 
function of space. We must remember that this form of material construction is 
observed even in nature. Thus the “Bamboo Tree” presents a variation in its 
natural density in fiber, which gives it the ability to optimally support charges 
when it undergoes the pressure of winds [3] [4]. Similarly when viewed in the 
cross section of the tree trunk, we note that its density varies from young wood 
(core) to the old wood (outer part). This density variation in the wood is simply 
due to the natural transition of the small pores in the old wood to larger pores in 
the young wood [5]. It is therefore believed that the hollow cylinders, built from 
highly suitable FGM can provide solutions to the demands of the diverse cha-
racteristics or requirements to which they are subjected in their various applica-
tions. The optimization of the modeling and design of homogeneous hollow cy-
linder, for example to reduce the risk of accidents and disfunctioning of systems 
in which they are been integrated, require the understanding of their elas-
to-plastic regime. This topic has been so far extensively treated. Different ana-
lytical and numerical investigations were carried out in this context [1]-[14]. 
However the estimation of strain and stress fields and displacement in the rotat-
ing hollow cylinders constructed on the basis of the FGM is an important and 
actual topic in engineering, but remains poorly investigated. 

The main objective of this work is to find analytical and numerical solutions 
for the case of a rotating hollow cylinder whose walls are entirely made on Func-
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tionally Graded Materials and submitted to internal and external radial loading. 
Analytical and numerical solutions obtained show clearly the effects of differ-

ent profiles describing the graduation of the material properties. This is the case 
for the strain fields, stress fields and displacement. 

The paper is organized as follows. In the first part we present the model stu-
died. In the second part the equations describing the model are calculated and 
resolved. The third part presents the analytical and numerical results before con-
cluding the work in the fourth part. 

2. Method 
2.1. Problem Formulation 

In this part, we analyze the stress and strain states of a rotating hollow cylinder 
submitted to non-axisymmetric pressure. Let us consider a long hollow FGM 
circular cylinder with inner radius a and outer radius b subjected to the action of 
a uniform internal and external pressure loading respectively iP  and 0P , as 
show in Figure 1. 

The most common functionally graded materials in such applications are 
made of ceramic/metal non homogeneous structure, in which ceramic provides 
good thermal resistance and metal roles as a superior toughness and hardness 
[7] [8] [9] [10] [11]. Therefore, as it was experimentally demonstrated [6], a 
FGM is nonhomogeneous in composition and so its properties, especially those 
of Young modulus of elasticity, thermal conductivity, and mass density may vary 
continuously through the material. Since the modulus of elasticity, E, is impor-
tant in the determination of the strength of the structural element during opera-
tion, it is of engineering interest to ascertain the effect of variable modulus of 
elasticity on the deformation behavior of basic structures [9]. Poisson’s ratio is 
assumed to be constant because his variation has less practical significance than 
that of the elastic modulus and density [16]. In this work the materials are as-
sumed to be linearly elastic and isotropic and the modulus of elasticity of the cy-
lindrical material depends only on the radial direction. We assume as Horgan 
that the Young modulus of elasticity and the density are given by a power law 
function [17] 
 

 
Figure 1. (a) Hollow FGM circular cylinder; (b) thick circular cylinder under non-axi- 
symmetric loading. 
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( ) ( )0 0;
n nr rE r E r

b b
ρ ρ   = =   

   
,                (1) 

where E0 is the reference value of E, r is the radial coordinate and the exponent n 
is a positive or negative real number, reflecting the degree of non-uniformity of 
the material. 

Due to the axisymmetric load condition of hollow cylinder, the circumferen-
tial component of displacement is zero, and the radial component u depends on 
the radial distance r only [17]. Correspondingly, the stress components rσ  and

θσ  are also r-dependent only. In this work we are interested by the plane strain 
and we suppose that the length of hollow cylinder is very high compared to the 
radius in order to neglect the boundary effects. 

2.2. Stress and Strain Analysis 

For the rotating hollow cylinder, the equation of equilibrium is [13]-[18]: 

( ) ( ) 2 2d 0
d rr r r

r θσ σ ρ ω− + =                    (2) 

where rσ  and θσ  are the radial and circumferential components of stress, ω  
is the angular velocity of the cylinder, ρ  the density of the material is assumed 
to be constant.The strain-stress’s relation for infinitesimally elastic deformation 
(Hooke’s law) is given by: 

( ) 2Tr Iσ λ ε µε= +                         (3) 

where the Lame’s constant is given by: 

( )( ) ( )
;

1 1 2 2 1
E Eνλ µ

ν ν ν
= =

+ − +
                    (4) 

In the case of small deformations and due to the rotational symmetry, the 
strain-displacement relations are given by: 

d 0 0
d

0 0

0 0

r
r

r

z

u
r

u
rθ

ε

ε ε

ε

 = 
 
 = = 
 
 
 
 

                  (5) 

By using Equations (1), (3), (4) and (5), the stress-strain relation can become: 

( )( ) ( )

( )( )
( )

( )

0

0

0

d1
1 1 2 d

1 d
1 1 2 d

n
r r

r z

n
r r

z

n

z z r

E r u u
b r r

uE r u
b r r

rE
b

θ

θ

νσ νε ν
ν ν

ν
σ νε ν

ν ν

σ ε ν σ σ

    = + + −    + −    
  −  = + +   + −    


  = + +   

     (6) 

Substituting Equation (6) into Equation (2), the equation of displacement is 
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given by: 

( )
( )
( )

( )( )
( )

22
0 2

2
0

1 1 1 1 2d d1 0
d d 1 1 1

r r z
r

nu u nr n u r
r r r E

ν ν ν ρ ωνε
ν ν ν

 + − + − + + + + + =
− − −

 (7) 

This equation can be written as: 

( )
( )

( )
( )( )

( )

22
02 3

2
0

1 1 1 1 2d d1
d d 1 1 1

r r z
r

nu u nrr n r u r
r r E

ν ν ν ρ ωνε
ν ν ν

 − + + − + + − = − −
− − −  

(8) 

We can note that for a homogenous material ( )0n = , we obtain the govern-
ing differential equation found in the literature for a hollow rotating cylinder 
[4]-[10]. 

( )( )
( )

22
02 3

2
0

2
2

2

1 1 2d d ; 0; 0
d d 1

d d 0; 0; 0
d d

r r
r

r r
r

u ur r u r n
r r E

u ur r u n
r r

ν ν ρ ω
ω

ν

ω

 + −
+ − = − = ≠

−



+ − = = =

      (9) 

The next part of this work is devoted to the analytical and numerical resolu-
tion of Equation (8) 

2.3. Analytical and Numerical Solution 
Analytical Solution 
To find exacts solutions to displacements, strain and stress, we rewrite the Equa-
tion (8) in a series of three differential equations. One of these equations is ho-
mogenous and the others are inhomogeneous. 

The Equation (8) becomes: 

( )
( )

( )

( )
( )

( )

( )
( )

( )
( )( )

( )

2
2

2

2
2

2

22
02 3

2
0

1 1d d1 0
d d 1

1 1d d1
d d 1 1

1 1 1 1 2d d1
d d 1 1

r r
r

r r z
r

r r
r

nu ur n r u
r r

nu u nrr n r u
r r

nu ur n r u r
r r E

ν
ν

ν νε
ν ν

ν ν ν ρ ω
ν ν

  − + + + − =
−


 − +  + + − = −

− −
  − + + −  + + − = − − −

  (10) 

1) Resolution of homogenous equation 
The homogenous equation is given by: 

( )
( )

( )
2

2
2

1 1d d1 0
d d 1

r r
r

nu ur n r u
r r

ν
ν

 − + + + − =
−

             (11) 

To solve the Equation (11), we make the following change of variable: 

er λ=                               (12) 

By using Equation (12), Equation (11) becomes: 

( )2

2

1 1d d 0
d d 1

nu un u
ν

λ λ ν
 − + + − =

−
                 (13) 

The solution of this equation is given by: 
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( ) ( )2 2
1 2 1 2, ,n K n K

Hu C r C r C C− + − −= + ∈ℜ              (14) 

where 2 44
1

nK n ν
ν

= + −
−

 and the integration constants are 1C  and 2C  

2) Resolution of inhomogeneous equations 
According to Equation (10) the first inhomogeneous equation is given by: 

( )
( )

( )
2

2
2

1 1d d1
d d 1 1

r r z
r

nu u nr n r u r
r r

ν νε
ν ν

 − + + + − = −
− −

       (15) 

To solve this equation, we search the particular solution 1Pu  which has the 
same form as the second member of the equation: 

1Pu Ar B= +                         (16) 

where A and B are the constants. 
By substituting Equation (16) into Equation (15) we obtain: 

; 0zA Bνε= − =                       (17) 

Then Equation (16) becomes: 

1P zu rνε= −                          (18) 

According to Equation (10) the second inhomogeneous equation is given by: 

( )
( )

( )
( )( )

( )

22
02 3

2
0

1 1 1 1 2d d1
d d 1 1

r r
r

nu ur n r u r
r r E

ν ν ν ρ ω
ν ν

 − + + − + + − = −
− −

 (19) 

To solve Equation (19) we search the particular solution 2Pu  which has the 
same form as the second member of the equation: 

3
2Pu Dr=                               (20) 

where D is constant. 
By substituting Equation (20) into Equation (19) we obtain the constant: 

( )( )
( )

2
0

0

1 1 2
8 3 2 4

D
n n E
ν ν ρ ω

ν
+ −

= −
 + − + 

                   (21) 

By substituting Equation (21) into Equation (20) we obtain: 

( )( )
( )

2
0 3

2
0

1 1 2
8 3 2 4Pu r

n n E
ν ν ρ ω

ν
+ −

= −
 + − + 

                 (22) 

The general solution of Equation (10) is given by: 

( ) ( ) ( )( )
( )

2
2 2 0 3

1 2
0

1 1 2
8 3 2 4

n K n K
r zu C r C r r r

n n E
ν ν ρ ω

νε
ν

− + − − + −
= + − −

 + − + 
 (23) 

In the case of homogenous material, Equation (23) becomes: 

( )( )
( )

1
1 2

2
01 3

1 2
0

; 0; 0

1 1 2
; 0; 0

8 1

r z

r z

u C r C r r n

u C r C r r r n
E

νε ω

ν ν ρ ω
νε ω

ν

−

−

 = + − = =


+ −
= + − − = ≠ −

  (24) 
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By substituting Equation (24) into Equation (5) the components of strain 
tensor are given by: 

( ) ( ) ( ) ( ) ( )( )
( )

( ) ( ) ( )( )
( )

2
2 2 2 2 0 2

1 2
0

2
2 2 2 2 0 2

1 2
0

3 1 1 2
2 2 8 3 2 4

1 1 2
8 3 2 4

n K n K
r z

n K n K
z

n K n K
C r C r r

n n E

C r C r r
n n Eθ

ν ν ρ ω
ε νε

ν

ν ν ρ ω
ε νε

ν

− + + − − +

− + + − − +

 + − + −
= − − − −

 + − +  


+ − = + − −  + − + 

(25) 

By substituting Equation (22) into Equation (6), the components of stress 
tensor are given by: 

( )( )

( )

( )( ) ( )( ){ } ( )
( )

( )( )

( )

( ) ( ){ } [ ]
( )

( )( )

( )

( )

2 2
0 20 2

1 2

2 2
0 20 2

1 2

2
0 2

1 2

3 2
1 2 1 2

2 1 1 2 8 3 2 4

1 2
2 2 2 2

2 1 1 2 8 3 2 4

2
2 1 1 2

n K
K n

r n n

n K
K n

n n

n K

z n

E r C K n C r n K r
b n n b

E r C K n C r n K r
b n n b

E r C K n C K n
b

θ

ν ρ ω
σ ν ν ν ν

ν ν ν

ν ρ ω
σ ν ν

ν ν ν

ν
σ

ν ν

− −
+

− −
+

− −

−
   = − + − − + − − − −   + − + − +

+
   = − − + + + + − + − + −   + − + − +

= − + − + − −
+ −

( ){ } ( )
2

20 042
8 3 2 4

n
K n z

n n

r Er r
n n b b

νρ ω ε
ν

+









 − + + − +

(26) 

These solutions don’t exist when 
( )8 1
3 2cn n

ν
ν

−
= = −

−
. 

3) Boundary conditions 
The boundary conditions are used to determine the constants 1C  and 2C . 

For the hollow cylinder submitted to uniform pressures 0P  and iP  on the in-
ner and outer surfaces respectively, the mechanical boundary conditions can be 
expressed as: 

( ) ( )0;r r ib P a Pσ σ= − = −                (27) 

By substituting Equation (27) into Equation (26), the constants are given by: 

( )( )
( ) ( )( ) ( ){ }

( )( )
( ) ( )( ) ( ){ }

1 11 12 13
0

2 21 22 23
0

2 1 1 2
8 3 2 4 1 2

2 1 1 2
8 3 2 4 1 2

K K

K K

C C C C
n n n K E a b

C C C C
n n n K E a b

ν ν

ν ν ν

ν ν

ν ν ν

 + −
= − + +

   + − + + − − −    


+ − = − + +    + − + − − − −   
(28) 

where 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )( ){ }
( ) ( )

( ) ( )

( ) ( ) ( )( ){ }

2 2
11

2 2
12 0

6 2 3 6 2 2
13 0

2 2
21

2 2
22

6 2 3 6 2 2
23 0

8 3 2 4

8 3 2 4

3 2

8 3 2 4

8 3 2 4

3 2

K n n K
i

n KK

n K n K n KK

K n
o

K nn
i

n K n Kn

C n n Pa b

C n n P a b

C b a a b

C n n P b

C n n Pb a

C a b b

ν

ν

ν ρ ω

ν

ν

ν ρ ω

+ − +

+ +

+ + + + +

+ +

+ −

+ + + +

  = − + − + 
  = + − + 
 = − −


 = + − +  


 = − + − +  

 = − −


      (29) 
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In the case of homogenous hollow cylinder, Equation (29) becomes: 

( )( ) ( )( ) ( )
( )( )

( )( ) ( )( ) ( )( )
( )( )

2 2 2 2 2
1 2

1 2 2
0

2 2 2
1 2

2 2 2
0

8 1 3 2 1

8 1
; 0, 0

8 1 3 2 1 2 1

8 1

P P b a a b
C

a b E
n

P P b a
C

a b E

ν ν ρω ν

ν
ω

ν ν ρω ν ν

ν

  − − + − − +  =
 − − = ≠

 − − + − − + −  = −
− −

 

(30) 

In order to determine the constant zε , we use the expression of the z-component 
of the force given by: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, 2 2 2 2 2 2
1 2

4 4 2 2
3 4

d n K n K n K n K
z z

n n n n
z

F r r B B

B B

β
α β

α

σ α β α β

α β α β ε

− + − + + + + +

+ + + +

   = = − + −   

   + − + −   

∫
 (31) 

where: 

( )
( )( )

( )
( )( )

( )

0 1 0 2
1 2

2
0

3 4

2 2
; ;

2 1 1 2 2 1 1 2

4 ;
8 3 2 4

n n

o
n n

E K n C E K n C
B B

b b

EB B
n n b b

ν ν
ν ν ν ν

νρ ω
ν

+ − − −
= − = −

+ − + −

= − =
+ − +

 

We suppose that the ends of the cylinders are free. It contracts as is rotates. 
The net force Fz in the axial direction should be equal to be zero [8] [9] [10]. By 
solving Equation (31) we obtain: 

( )
( )

( ) ( )

( )
( )

( ) ( )

( )
( )

2 2 2 21

4

2 2 2 22

4

3 2 2

4

2 2
2

2 2
2

2
4

n K n K
z

n K n K

n B
n K B

n B
n K B

n B
n B

ε α β

α β

α β

− + + − + +

− − + − − +

+  = − − − +

+  − − + +

+
 − − +

          (32) 

3. Numerical and Analytical Results 

In this part we study the influence of the inhomogeneous parameter n on the 
stress, strain and displacement in the rotation hollow cylinder. We use the con-
stants given by the properties of an aluminum alloy (7075-T6) [14]: 

9
0

5 3 1
0

40 cm; 60 cm; 0.3; 79.0 10 Pa;

10 Pa; 2800 kg m ; 250 rad s ;o

a b E

P a r b

ν

ρ ω− −

= = = = ×

= = ⋅ = ⋅ ≤ ≤
 

To validate the analytical results we make the comparison with the numerical 
one. Equation (2) can be written as: 

( ) 2d 0
d

rr r r
r r

θσ σσ ρ ω
−

+ + =                    (33) 

The solution of this equation can be efficiently handled by using a special 
stress-function that automatically satisfies the equilibrium Equation (33). A par-
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ticular stress-stress function relation is given by: 

( ) 2 2d;
dr

F F r r
r rθσ σ ρ ω= = + ,                 (34) 

where ( )F F r=  is the stress function. The Strain compatibility equation is 
given by: 

( )d
dr r
r θε ε=                          (35) 

The strain-stress relation can be written: 

( ) ( )

( ) ( )

1

1

r

r r

E r

E r

θ θ

θ

ε σ νσ

ε σ νσ

 = −


 = −


                      (36) 

Substitution of Equations (34) and (36) in the compatibility relation (35) gives 
the following governing equation: 

( ) ( ) ( )2 32
2

2

3d d1 1
d d

n

n

rF Fr r n n F
r r b

ρω ν
ν

+ +
+ − − − = .           (37) 

with boundary conditions: 

( ) ( );i oF a aP F b bP= = ,                       (38) 

the Equation (36) can be transformed as: 

( )2 1

2 2 12

31 1 n

n

rn nY Y Y
r r b

ρω νν + +− −′ = + + ,             (39) 

where ( )1 2 1 2
d; , ,
d
FY F Y F f r Y Y
r

′= = = = . 

The Equation (36) is transformed into a set of coupled time-dependent dis-
crete differential equations that are solved by using the shooting method and the 
fourth order Runge-Kutta algorithm. The analytical and numerical solutions are 
thus presented. 

Figure 2 presents the variation of displacement along the radial direction of 
an inhomogeneous hollow cylinder. 

In Figure 2, displacements decrease linearly along the radial direction. All 
displacements are higher at the inner surface, and vary with parallel curves in 
the radial direction of cylinder. In addition, the radial displacement increases 
when the inhomogeneous parameter n increases. For a homogenous material, 
the maximum value of radial displacement is respectively 1.77 × 10−4 m and 3.22 
× 10−4 m for Pi = 105 Pa. We conclude that radial displacement decrease when 
the internal pressure increases. More ever the radial displacement curves save 
the parallelism when internal pressure Pi and the inhomogeneous parameter n 
changes. In Figure 2(b) the displacements are higher than in Figure 2(a), and 
then these displacements are much affected by the outer pressure than the in-
ternal one. 
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Figure 2. Displacement as function of radius r; (a) for Pi = 100Po, (b) for Pi = Po. 
 

The variation of radial strain is depicted in Figure 3. 
In Figure 3(a) we observe that radial strain increases gradually from the inner 

surface through the outer surface and decrease with the inhomogeneous para-
meter. However in Figure 3(b), all radial strains are higher at the outer surface, 
and vary with parallel curves in the radial direction of the cylinder. For n = −1 
and n = 0, we observe that the radial strain increases and then decreases along 
the radius. 

For n = 1, the radial strain decreases gradually along the radial direction and 
the maximum value of strain is 7.6 × 10−4 m. 

Figure 4 illustrates the variation of tangential strain along the radial direction 
of inhomogeneous hollow cylinder. 

In Figure 4, all tangential strains are higher at the inner surface, and vary with 
parallel curves in the radial direction of the cylinder. We observe that tangential 
strain decreases gradually from the inner surface through the outer surface. 

For Pi = Po tangential strains increase with increasing inhomogeneous para-
meter and reaches to maximum value of 4.8 × 10−4 m (n = −1). For Pi = 100Po, 
tangential strains decrease with increasing inhomogeneous parameter and the 
maximum value of tangential strain is 8.3 × 10−4 m (n = 1). 

Figure 5 shows the variations of radial stresses rσ  along the radial direction 
of inhomogeneous hollow cylinder, obtained from analytical and numerical so-
lutions. 

In Figure 5(a), the radial stress decreases gradually from the inner surface 
through the outer surface. The maximum value is 10Mpa. From r = 0.4m to r = 
0.52 m, radial stress decrease when inhomogeneous parameter n increases. From 
r = 0.52 m, inhomogeneous parameter doesn’t affect the radial stress. In Figure 
5(b), according to boundary conditions, radial stress I zero at the inner and out-
er surfaces. From r = 0.4 m to r = 0.5 m, radial stress gradually increases and  
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Figure 3. Radial strain as function of radius r: (a) for Pi = 100Po, (b) for Pi = Po. 
 

 
Figure 4. Tangential strain as function of radius r: (a) for Pi = 100Po, (b) for Pi = Po. 
 
reaches to its maximum value 3.75 Mpa at r = 0.5 and then decrease to zero. In 
addition, radial stress decreases when inhomogeneous parameter n. They have 
lower value for n = 1 when compared with the results for n = 0 and n = −1. It is 
due to the fact that Young modulus of elasticity decreases when inhomogeneous 
parameter (n) increases. 

The variation of tangential stress obtained from analytical and numerical so-
lutions is depicted in Figure 6. 

In Figure 6, we observe that tangential stress decreases gradually from the in-
ner surface through the outer surface. All tangential stresses are higher at the  
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Figure 5. Radial stress as function of radius r: (a) for Pi = 100Po, (b) for Pi = Po. 
 

 
Figure 6. Tangential stress as function of radius r: (a) for Pi = 100Po, (b) for Pi = Po. 
 
inner surface. For Pi = Po, tangential stress decreases with increasing inhomoge-
neous parameter and reaches to its maximum value of 55 Mpa (n = −1). For Pi = 
100Po, tangential strains decrease with increasing inhomogeneous parameter and 
maximum value of tangential stress is 82 Mpa (n = −1). They have lower value 
for n = 1when compared with the results for n = 0 and n = −1. 

4. Conclusions 

In this paper we analyze stress and strains along the radial direction of inhomo-
geneous hollow rotating cylinder under axisymmetric radial loading. Analytical 
and numerical results lead us to conclude that: 

- The stress, strain and displacement obtained from analytical and numerical 
solution are in good correlation. 
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- The magnitudes of tangential stress are higher than those of radial stress. 
- Change in the gradient of the FGM tube does not produce a substantial vari-

ation of the radial stress, but strongly affects the distribution of the tangential 
stress. 

- Tangential stress, tangential strain and displacements are higher at the inner 
surface. 

- Internal radial pressure strongly affects the radial stresses and radial strain. 
The results obtained are helpful in designing FGM cylindrical vessels to pre-

vent failure. This investigation permits us to optimize the elastic response of cy-
linders under pressure by tailoring the thickness variation of the elastic proper-
ties and to reduce manufacturing costs given by the technological limitations 
that occur to produce entire functionally graded walls. 
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