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ABSTRACT

In this paper, closed forms of the sum formulas
∑n

k=0 x
kW 2

k ,
∑n

k=0 x
kWk+1Wk and∑n

k=0 x
kWk+2Wk for the squares of generalized Tribonacci numbers are presented. As special

cases, we give summation formulas of Tribonacci, Tribonacci-Lucas, Padovan, Perrin numbers and
the other third order recurrence relations. We present the proofs to indicate how these formulas, in
general, were discovered. Of course, all the listed formulas may be proved by induction, but that
method of proof gives no clue about their discovery. Our work generalize third order recurrence
relations.
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1 INTRODUCTION

The generalized Tribonacci sequence {Wn(W0,W1,W2; r, s, t)}n≥0 (or shortly {Wn}n≥0) is defined
as follows:

Wn = rWn−1 + sWn−2 + tWn−3, W0 = a,W1 = b,W2 = c, n ≥ 3 (1.1)

where W0,W1,W2 are arbitrary complex numbers and r, s, t are real numbers. The generalized
Tribonacci sequence has been studied by many authors, see for example [1-15].

The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n = −s

t
W−(n−1) −

r

t
W−(n−2) +

1

t
W−(n−3)

for n = 1, 2, 3, ... when t ̸= 0. Therefore, recurrence (1.1) holds for all integer n.

In literature, for example, the following names and notations (see Table 1) are used for the special
case of r, s, t and initial values.

Table 1. A few special case of generalized Tribonacci sequences

Sequences (Numbers) Notation OEIS [16]
Tribonacci {Tn} = {Vn(0, 1, 1; 1, 1, 1)} A000073, A057597

Tribonacci-Lucas {Kn} = {Vn(3, 1, 3; 1, 1, 1)} A001644, A073145
third order Pell {P (3)

n } = {Vn(0, 1, 2; 2, 1, 1)} A077939, A077978
third order Pell-Lucas {Q(3)

n } = {Vn(3, 2, 6; 2, 1, 1)} A276225, A276228
third order modified Pell {E(3)

n } = {Vn(0, 1, 1; 2, 1, 1)} A077997, A078049
Padovan (Cordonnier) {Pn} = {Vn(1, 1, 1; 0, 1, 1)} A000931

Perrin (Padovan-Lucas) {En} = {Vn(3, 0, 2; 0, 1, 1)} A001608, A078712
Padovan-Perrin {Sn} = {Vn(0, 0, 1; 0, 1, 1)} A000931, A176971
Pell-Padovan {Rn} = {Vn(1, 1, 1; 0, 2, 1)} A066983, A128587

Pell-Perrin {Cn} = {Vn(3, 0, 2; 0, 2, 1)}
Jacobsthal-Padovan {Qn} = {Vn(1, 1, 1; 0, 1, 2)} A159284

Jacobsthal-Perrin (-Lucas) {Ln} = {Vn(3, 0, 2; 0, 1, 2)} A072328
Narayana {Nn} = {Vn(0, 1, 1; 1, 0, 1)} A078012

Narayana-Lucas {Un} = {Vn(3, 1, 1; 1, 0, 1)} A001609
Narayana-Perrin {Hn} = {Vn(3, 0, 2; 1, 0, 1)}

third order Jacobsthal {J(3)
n } = {Vn(0, 1, 1; 1, 1, 2)} A077947

third order Jacobsthal-Lucas {j(3)n } = {Vn(2, 1, 5; 1, 1, 2)} A226308
3-primes {Gn} = {Vn(0, 1, 2; 2, 3, 5)}

Lucas 3-primes {Hn} = {Vn(3, 2, 10; 2, 3, 5)}
modified 3-primes {En} = {Vn(0, 1, 1; 2, 3, 5)}

Here OEIS stands for On-line Encyclopedia of Integer Sequences. 3-primes, Lucas 3-primes and
modified 3-primes sequences can also be called (named) as Grahaml, Grahaml-Lucas and modified
Grahaml sequences, respectively, see [17].

The evaluation of sums of powers of these sequences is a challenging issue. Two pretty examples
are

n∑
k=0

(−1)kT 2
k =

1

4
((−1)n (T 2

n+3 − 2T 2
n+2 + 3T 2

n+1 − 2Tn+1Tn+3)− 1)
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and

n∑
k=0

(−1)kN2
k =

1

3
((−1)n (N2

n+3 − 2N2
n+2 + 2N2

n+1 − 2Nn+3Nn+1 + 2Nn+2Nn+1)− 1).

In this work, we derive expressions for sums of second powers of generalized Tribonacci numbers.
We present some works on sum formulas of powers of the numbers in the following Table 2.

Table 2. A few special study on sum formulas of second, third and arbitrary powers

Name of sequence sums of second powers sums of third powers sums of powers
Generalized Fibonacci [18,19,20,21,22,23] [24,25,26,27,28] [29,30,31]
Generalized Tribonacci [32,33]
Generalized Tetranacci [34,35]

2 AN APPLICATION OF THE
SUM OF THE SQUARES OF
THE NUMBERS

An application of the sum of the squares of the
numbers is circulant matrix. Computations of
the Frobenius norm, spectral norm, maximum
column length norm and maximum row length
norm of circulant (r-circulant, geometric circulant,
semicirculant) matrices with the generalized m-
step Fibonacci sequences require the sum of
the squares of the numbers of the sequences.
For generalized m-step Fibonacci sequences see
for example Soykan [36]. If m = 2,m = 3
and m = 4, we get the generalized Fibonacci
sequence, generalized Tribonacci sequence and
generalized Tetranacci sequence, respectively.

Next, we recall some information on circulant
(r-circulant, geometric circulant) matrices and
Frobenius norm, spectral norm, maximum
column length norm and maximum row length
norm.

Circulant matrices have been around for a
long time and have been extensively used in
many scientific areas. In some scientific areas
such as image processing, coding theory and
signal processing we often encounter circulant
matrices. These matrices also have many
applications in numerical analysis, optimization,
digital image processing, mathematical statistics
and modern technology.

Let n ≥ 2 be an integer and r be any real or
complex number. An n × n matrix Cr is called a
r-circulant matrix if it of the form

Cr =


c0 c1 c2 · · · cn−2 cn−1

rcn−1 c0 c1 · · · cn−3 cn−2

rcn−2 rcn−1 c0 · · · cn−4 cn−3

...
...

...
...

...
rc1 rc2 rc3 · · · rcn−1 c0


n×n

.

and the r-circulant matrix Cr is denoted by Cr = Circr(c0, c1, ..., cn−1). If r = 1 then 1-circulant
matrix is called as circulant matrix and denoted by C = Circ(c0, c1, ..., cn−1).

• Circulant matrix was first proposed by Davis in [37]. This matrix has many interesting properties,
and it is one of the most important research subject in the field of the computational and pure
mathematics (see for example references given in Table 3). For instance, Shen and Cen [38]
studied on the norms of r-circulant matrices with Fibonacci and Lucas numbers.
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• Then, later Kızılateş and Tuglu [39] defined a new geometric circulant matrix as follows:

Cr∗ =


c0 c1 c2 · · · cn−2 cn−1

rcn−1 c0 c1 · · · cn−3 cn−2

r2cn−2 rcn−1 c0 · · · cn−4 cn−3

...
...

...
...

...
rn−1c1 rn−2c2 rn−3c3 · · · rcn−1 c0


n×n

.

and then they obtained the bounds for the spectral norms of geometric circulant matrices with
the generalized Fibonacci number and Lucas numbers.

• When the parameter satisfies r = 1, we get the classical circulant matrix. See also Polatlı [40]
for the spectral norms of r-circulant matrices with a type of Catalan triangle numbers.

The Frobenius (or Euclidean) norm and spectral norm of a matrix A = (aij)m×n ∈ Mm×n(C) are
defined respectively as follows:

∥A∥F =

(
m∑
i=1

n∑
j=1

|aij |2
)1/2

and ∥A∥2 =

(
max
1≤i≤n

|λi|
)1/2

where λi ’s are the eigenvalues of the matrix A∗A and A∗ is the conjugate of transpose of the matrix
A . The maximum column length norm c1(.) and the maximum row length norm r1(.) of an matrix of
order n× n are defined as follows:

c1(A) = max
1≤j≤n

(
n∑

i=1

|aij |2
)1/2

and r1(A) = max
1≤i≤n

(
n∑

j=1

|aij |2
)1/2

.

The following inequality holds for any matrix A = Mn×n(C):

1√
n
∥A∥F ≤ ∥A∥2 ≤ ∥A∥F .

Calculations of the above norms ∥A∥F , ∥A∥2 , c1(A) and r1(A) require the sum of the squares of the
numbers aij . As in our case, the numbers aij can be chosen as elements of second, third or higher
order linear recurrence sequences.

In the following Table 3, we present a few special study on the Frobenius norm, spectral norm,
maximum column length norm and maximum row length norm of circulant (r-circulant, geometric
circulant, semicirculant) matrices with the generalized m-step Fibonacci sequences which require
sum formulas of second powers of numbers in m-step Fibonacci sequences (m = 2, 3, 4).

Table 3. Papers on the norms

Name of sequence Papers
second order↓ second order↓

Fibonacci, Lucas [41,39,42,43,44,45,46,38,47,48,49,50]
Pell, Pell-Lucas [51,52]

Jacobsthal, Jacobsthal-Lucas [53,54,55,56]
third order↓ third order↓

Tribonacci, Tribonacci-Lucas [57,58]
Padovan, Perrin [59,60,61]

fourth order↓ fourth order↓
Tetranacci, Tetranacci-Lucas [62]
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Also linear summing formulas of the generalized m-step Fibonacci sequences are required for the
computation of various norms of circulant matrices circulant matrices with the generalized m-step
Fibonacci sequences. We present some works on summing formulas of the numbers in the following
Table 4.

Table 4. A few special study of sum formulas

Name of sequence Papers which deal with summing formulas
Pell and Pell-Lucas [63],[64,65]

Generalized Fibonacci [66,67,68,69,70]
Generalized Tribonacci [71,72,73]
Generalized Tetranacci [74,75,76]
Generalized Pentanacci [77,78]
Generalized Hexanacci [79]

3 MAIN RESULT

Theorem 3.1. Let x be a complex number. If ∆ = (−t2x3 + sx+ rtx2 +1)(r2x− s2x2 + t2x3 +2sx+
2rtx2 − 1) ̸= 0 then

(a)
n∑

k=0

xkW 2
k =

∆1

(−t2x3 + sx+ rtx2 + 1)(r2x− s2x2 + t2x3 + 2sx+ 2rtx2 − 1)
,

(b)
n∑

k=0

xkWk+1Wk =
∆2

(−t2x3 + sx+ rtx2 + 1)(r2x− s2x2 + t2x3 + 2sx+ 2rtx2 − 1)
,

(c)
n∑

k=0

xkWk+2Wk =
∆3

(−t2x3 + sx+ rtx2 + 1)(r2x− s2x2 + t2x3 + 2sx+ 2rtx2 − 1)
,

where

∆1

= −xn+3(t2x3 + sx+ rtx2 − 1)W 2
n+3

−xn+2(r2x+ t2x3 + sx+ r2t2x4 + rtx2 + r2sx2 + r3tx3 + 2rstx3 − 1)W 2
n+2

−xn+1(r2x+ s2x2 − s3x3 + t2x3 + sx+ r2t2x4

+s2t2x5 + rtx2 + r2sx2 + r3tx3 + 4rstx3 − rs2tx4 − 1)W 2
n+1

++ x2(t2x3 + sx+ rtx2 − 1)W 2
2

+x(r2x+ t2x3 + sx+ r2t2x4 + rtx2 + r2sx2 + r3tx3 + 2rstx3 − 1)W 2
1

+(r2x+ s2x2 − s3x3 + t2x3 + sx+ r2t2x4 + s2t2x5 + rtx2

+r2sx2 + r3tx3 + 4rstx3 − rs2tx4 − 1)W 2
0

+2xn+4(r + tx)(s+ rtx)Wn+3Wn+2 + 2xn+4t(r + stx2)Wn+3Wn+1

−2xn+4t(sx− 1)(s+ rtx)Wn+2Wn+1 − 2x3(r + tx)(s+ rtx)W2W1

−2tx3(r + stx2)W2W0 + 2x3t(sx− 1)(s+ rtx)W1W0

26
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and

∆2

= xn+3(r + stx2)W 2
n+3 + xn+4(t+ rs)(s+ rtx)W 2

n+2 + xn+4t2(r + stx2)W 2
n+1

−xn+2(r2x+ s2x2 + t2x3 + 2rstx3 − 1)Wn+3Wn+2

+xn+3t(r2x− s2x2 − t2x3 + 1)Wn+3Wn+1

−xn+1(r2x+ s2x2 − s3x3 + t2x3 + sx+ rtx2 + r2sx2 + r3tx3

−rt3x5 − st2x4 + 2rstx3 − rs2tx4 − 1)Wn+2Wn+1 − x2(r + stx2)W 2
2

−x3(t+ rs)(s+ rtx)W 2
1 − x3t2(r + stx2)W 2

0 + x(r2x+ s2x2 + t2x3 + 2rstx3 − 1)W2W1

−x2t(r2x− s2x2 − t2x3 + 1)W2W0 + (r2x+ s2x2 − s3x3 + t2x3 + sx

+rtx2 + r2sx2 + r3tx3 − rt3x5 − st2x4 + 2rstx3 − rs2tx4 − 1)W1W0

and

∆3 = xn+3(s− s2x+ r2 + rtx)W 2
n+3 + xn+2(s− s2x+ r2t2x3 − r2sx+ rt3x4 − rs2tx3)W 2

n+2

+xn+4t2(s− s2x+ r2 + rtx)W 2
n+1 − xn+2(r + tx)(r2x− s2x2 + t2x3 − 1)Wn+3Wn+2

−xn+1(r2x+ s2x2 − s3x3 + t2x3 + sx+ r2sx2 − st2x4 + 2rstx3 − 1)Wn+3Wn+1

+xn+2t(sx− 1)(r2x− s2x2 + t2x3 − 1)Wn+2Wn+1 − x2(s− s2x+ r2 + rtx)W 2
2

+x(−s+ s2x− r2t2x3 + r2sx− rt3x4 + rs2tx3)W 2
1 − x3t2(s− s2x+ r2 + rtx)W 2

0

+x (r + tx) (r2x− s2x2 + t2x3 − 1)W2W1

+(r2x+ s2x2 − s3x3 + t2x3 + sx+ r2sx2 − st2x4 + 2rstx3 − 1)W2W0

−xt (sx− 1) (r2x− s2x2 + t2x3 − 1)W1W0.

Proof. First, we obtain
∑n

k=0 W
2
k . Using the recurrence relation

Wn+3 = rWn+2 + sWn+1 + tWn

or
tWn = Wn+3 − rWn+2 − sWn+1

i.e.

t
2
W

2
n = (Wn+3 − rWn+2 − sWn+1)

2
= W

2
n+3 + r

2
W

2
n+2 + s

2
W

2
n+1 − 2rWn+3Wn+2 − 2sWn+3Wn+1 +2rsWn+2Wn+1

we obtain

t
2
x
n
W

2
n = x

n
W

2
n+3 + r

2
x
n
W

2
n+2 + s

2
x
n
W

2
n+1 − 2rx

n
Wn+3Wn+2 − 2sx

n
Wn+3Wn+1 + 2rsx

n
Wn+2Wn+1

t
2
x
n−1

W
2
n−1 = x

n−1
W

2
n+2 + r

2
x
n−1

W
2
n+1 + s

2
x
n−1

W
2
n − 2rx

n−1
Wn+2Wn+1

−2sx
n−1

Wn+2Wn + 2rsx
n−1

Wn+1Wn

t
2
x
n−2

W
2
n−2 = x

n−2
W

2
n+1 + r

2
x
n−2

W
2
n + s

2
x
n−2

W
2
n−1 − 2rx

n−2
Wn+1Wn

−2sx
n−2

Wn+1Wn−1 + 2rsx
n−2

WnWn−1

.

.

.

t
2
x
2
W

2
2 = x

2
W

2
5 + r

2
x
2
W

2
4 + s

2
x
2
W

2
3 − 2rx

2
W5W4 − 2sx

2
W5W3 + 2rsx

2
W4W3

t
2
x
1
W

2
1 = x

1
W

2
4 + r

2
x
1
W

2
3 + s

2
x
1
W

2
2 − 2rx

1
W4W3 − 2sx

1
W4W2 + 2rsx

1
W3W2

t
2
x
0
W

2
0 = x

0
W

2
3 + r

2
x
0
W

2
2 + s

2
x
0
W

2
1 − 2rx

0
W3W2 − 2sx

0
W3W1 + 2rsx

0
W2W1

If we add the equations by side by, we get

t2
n∑

k=0

xkW 2
k =

n+3∑
k=3

xk−3W 2
k + r2

n+2∑
k=2

xk−2W 2
k + s2

n+1∑
k=1

xk−1W 2
k (3.1)

−2r

n+2∑
k=2

xk−2Wk+1Wk − 2s

n+1∑
k=1

xk−1Wk+2Wk + 2rs

n+1∑
k=1

xk−1Wk+1Wk

27
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Next we obtain
∑n

k=0 Wk+1Wk. Multiplying the both side of the recurrence relation

tWn = Wn+3 − rWn+2 − sWn+1

by Wn+1 we get
tWn+1Wn = Wn+3Wn+1 − rWn+2Wn+1 − sW 2

n+1.

Then using last recurrence relation, we obtain

txnWn+1Wn = xnWn+3Wn+1 − rxnWn+2Wn+1 − sxnW 2
n+1

txn−1WnWn−1 = xn−1Wn+2Wn − rxn−1Wn+1Wn − sxn−1W 2
n

txn−2Wn−1Wn−2 = xn−2Wn+1Wn−1 − rxn−2WnWn−1 − sxn−2W 2
n−1

...

tx2W3W2 = x2W5W3 − rx2W4W3 − sx2W 2
3

txW2W1 = xW4W2 − rxW3W2 − sxW 2
2

tx0W1W0 = x0W3W1 − rx0W2W1 − sx0W 2
1

If we add the equations by side by, we get

t

n∑
k=0

xkWk+1Wk =

n+1∑
k=1

xk−1Wk+2Wk − r

n+1∑
k=1

xk−1Wk+1Wk − s

n+1∑
k=1

xk−1W 2
k . (3.2)

Next we obtain
∑n

k=2 Wk+2Wk. Multiplying the both side of the recurrence relation

tWn = Wn+3 − rWn+2 − sWn+1

by Wn+2 we get
tWn+2Wn = Wn+3Wn+2 − rW 2

n+2 − sWn+2Wn+1.

Then using last recurrence relation, we obtain

txnWn+2Wn = xnWn+3Wn+2 − rxnW 2
n+2 − sxnWn+2Wn+1

txn−1Wn+1Wn−1 = xn−1Wn+2Wn+1 − rxn−1W 2
n+1 − sxn−1Wn+1Wn

txn−2WnWn−2 = xn−2Wn+1Wn − rxn−2W 2
n − sxn−2WnWn−1

...

tx2W4W2 = x2W5W4 − rx2W 2
4 − sx2W4W3

tx1W3W1 = x1W4W3 − rx1W 2
3 − sx1W3W2

tx0W2W0 = x0W3W2 − rx0W 2
2 − sx0W2W1

If we add the equations by side by, we get

t

n∑
k=0

xkWk+2Wk =

n+2∑
k=2

xk−2Wk+1Wk − r

n+2∑
k=2

xk−2W 2
k − s

n+1∑
k=1

xk−1Wk+1Wk (3.3)

Solving the system (3.1)-(3.2)-(3.3), the results in (a), (b) and (c) follow.

4 SPECIFIC CASES

In this section, for the specific cases of x, we present the closed form solutions (identities) of the sums∑n
k=0 x

kW 2
k ,
∑n

k=0 x
kWk+1Wk and

∑n
k=0 x

kWk+2Wk for the specific case of sequence {Wn}.
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4.1 The case x = 1

In this subsection we consider the special case x = 1. See also [33] for some third order recurrence
relations (with the sum starting from 0).

Taking r = s = t = 1 in Theorem 3.1, we obtain the following Proposition.

Proposition 4.1. If r = s = t = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 W
2
k = 1

4
(−W 2

n+3 − 4W 2
n+2 − 5W 2

n+1 +4Wn+3Wn+2 +2Wn+3Wn+1 +W 2
2 +4W 2

1 +5W 2
0 −

4W2W1 − 2W2W0).

(b)
∑n

k=0 Wk+1Wk = 1
4
(W 2

n+3+2W 2
n+2+W 2

n+1−2Wn+3Wn+2−2Wn+2Wn+1−W 2
2 −2W 2

1 −W 2
0 +

2W2W1 + 2W1W0).

(c)
∑n

k=0 Wk+2Wk = 1
4
(W 2

n+3 +W 2
n+1 − 2Wn+3Wn+1 −W 2

2 −W 2
0 + 2W2W0).

From the above proposition, we have the following Corollary which gives sum formulas of Tribonacci
numbers (take Wn = Tn with T0 = 0, T1 = 1, T2 = 1).

Corollary 4.2. For n ≥ 0, Tribonacci numbers have the following properties:

(a)
∑n

k=0 T
2
k = 1

4
(−T 2

n+3 − 4T 2
n+2 − 5T 2

n+1 + 4Tn+3Tn+2 + 2Tn+3Tn+1 + 1).

(b)
∑n

k=0 Tk+1Tk = 1
4
(T 2

n+3 + 2T 2
n+2 + T 2

n+1 − 2Tn+3Tn+2 − 2Tn+2Tn+1 − 1).

(c)
∑n

k=0 Tk+2Tk = 1
4
(T 2

n+3 + T 2
n+1 − 2Tn+3Tn+1 − 1).

Taking Wn = Kn with K0 = 3,K1 = 1,K2 = 3 in the above Proposition, we have the following
Corollary which presents sum formulas of Tribonacci-Lucas numbers.

Corollary 4.3. For n ≥ 0, Tribonacci-Lucas numbers have the following properties:

(a)
∑n

k=0 K
2
k = 1

4
(−K2

n+3 − 4K2
n+2 − 5K2

n+1 + 4Kn+3Kn+2 + 2Kn+3Kn+1 + 28).

(b)
∑n

k=0 Kk+1Kk = 1
4
(K2

n+3 + 2K2
n+2 +K2

n+1 − 2Kn+3Kn+2 − 2Kn+2Kn+1 − 8).

(c)
∑n

k=0 Kk+2Kk = 1
4
(K2

n+3 +K2
n+1 − 2Kn+3Kn+1).

Taking r = 2, s = 1, t = 1 in Theorem 3.1, we obtain the following Proposition.

Proposition 4.4. If r = 2, s = 1, t = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 W
2
k = 1

9
(−W 2

n+3−10W 2
n+1−9W 2

n+2+2Wn+3Wn+1+6Wn+3Wn+2+W 2
2 +9W 2

1 +10W 2
0 −

6W2W1 − 2W2W0).

(b)
∑n

k=0 Wk+1Wk = 1
9
(W 2

n+3 + 3W 2
n+2 + W 2

n+1 − 3Wn+3Wn+2 + Wn+3Wn+1 − 6Wn+2Wn+1 −
W 2

2 − 3W 2
1 −W 2

0 + 3W2W1 −W2W0 + 6W1W0).

(c)
∑n

k=0 Wk+2Wk = 1
9
(2W 2

n+3 +2W 2
n+1 − 3Wn+3Wn+2 − 4Wn+3Wn+1 − 2W 2

2 − 2W 2
0 + 3W2W1 +

4W2W0).

From the last Proposition, we have the following Corollary which gives sum formulas of Third-order
Pell numbers (take Wn = Pn with P0 = 0, P1 = 1, P2 = 1).

Corollary 4.5. For n ≥ 0, third-order Pell numbers have the following properties:

(a)
∑n

k=0 P
2
k = 1

9
(−P 2

n+3 − 10P 2
n+1 − 9P 2

n+2 + 2Pn+3Pn+1 + 6Pn+3Pn+2 + 1).

(b)
∑n

k=0 Pk+1Pk = 1
9
(P 2

n+3 + 3P 2
n+2 + P 2

n+1 − 3Pn+3Pn+2 + Pn+3Pn+1 − 6Pn+2Pn+1 − 1).

(c)
∑n

k=0 Pk+2Pk = 1
9
(2P 2

n+3 + 2P 2
n+1 − 3Pn+3Pn+2 − 4Pn+3Pn+1 − 2).
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Taking Wn = Qn with Q0 = 3, Q1 = 2, Q2 = 6 in the last Proposition, we have the following Corollary
which presents sum formulas of third-order Pell-Lucas numbers.

Corollary 4.6. For n ≥ 0, third-order Pell-Lucas numbers have the following properties:

(a)
∑n

k=0 Q
2
k = 1

9
(−Q2

n+3 − 10Q2
n+1 − 9Q2

n+2 + 2Qn+3Qn+1 + 6Qn+3Qn+2 + 54).

(b)
∑n

k=0 Qk+1Qk = 1
9
(Q2

n+3 + 3Q2
n+2 +Q2

n+1 − 3Qn+3Qn+2 +Qn+3Qn+1 − 6Qn+2Qn+1 − 3).

(c)
∑n

k=0 Qk+2Qk = 1
9
(2Q2

n+3 + 2Q2
n+1 − 3Qn+3Qn+2 − 4Qn+3Qn+1 + 18).

From the last Proposition, we have the following Corollary which gives sum formulas of third-order
modified Pell numbers (take Wn = En with E0 = 0, E1 = 1, E2 = 1).

Corollary 4.7. For n ≥ 0, third-order modified Pell numbers have the following properties:

(a)
∑n

k=0 E
2
k = 1

9
(−E2

n+3 − 10E2
n+1 − 9E2

n+2 + 2En+3En+1 + 6En+3En+2 + 4).

(b)
∑n

k=0 Ek+1Ek = 1
9
(E2

n+3 + 3E2
n+2 + E2

n+1 − 3En+3En+2 + En+3En+1 − 6En+2En+1 − 1).

(c)
∑n

k=0 Ek+2Ek = 1
9
(2E2

n+3 + 2E2
n+1 − 3En+3En+2 − 4En+3En+1 + 1).

Taking r = 0, s = 1, t = 1 in Theorem 3.1, we obtain the following Proposition.

Proposition 4.8. If r = 0, s = 1, t = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 W
2
k = −W 2

n+3 − W 2
n+2 − 2W 2

n+1 + 2Wn+3Wn+1 + 2Wn+3Wn+2 + W 2
2 + W 2

1 + 2W 2
0 −

2W2W1 − 2W2W0.

(b)
∑n

k=0 Wk+1Wk = W 2
n+3+W 2

n+2+W 2
n+1−Wn+3Wn+2−Wn+3Wn+1−W 2

2 −W 2
1 −W 2

0 +W2W1+
W2W0.

(c)
∑n

k=0 Wk+2Wk = Wn+3Wn+2 −W2W1.

From the last Proposition, we have the following Corollary which gives sum formulas of Padovan
numbers (take Wn = Pn with P0 = 1, P1 = 1, P2 = 1).

Corollary 4.9. For n ≥ 0, Padovan numbers have the following properties:

(a)
∑n

k=0 P
2
k = −P 2

n+3 − P 2
n+2 − 2P 2

n+1 + 2Pn+3Pn+1 + 2Pn+3Pn+2.

(b)
∑n

k=0 Pk+1Pk = P 2
n+3 + P 2

n+2 + P 2
n+1 − Pn+3Pn+2 − Pn+3Pn+1 − 1.

(c)
∑n

k=0 Pk+2Pk = Pn+3Pn+2 − 1.

Taking Wn = En with E0 = 3, E1 = 0, E2 = 2 in the last Proposition, we have the following Corollary
which presents sum formulas of Perrin numbers.

Corollary 4.10. For n ≥ 0, Perrin numbers have the following properties:

(a)
∑n

k=0 E
2
k = −E2

n+3 − E2
n+2 − 2E2

n+1 + 2En+3En+1 + 2En+3En+2 + 10.

(b)
∑n

k=0 Ek+1Ek = E2
n+3 + E2

n+2 + E2
n+1 − En+3En+2 − En+3En+1 − 7.

(c)
∑n

k=0 Ek+2Ek = En+3En+2.

From the last Proposition, we have the following Corollary which gives sum formulas of Padovan-
Perrin numbers (take Wn = Sn with S0 = 0, S1 = 0, S2 = 1).

Corollary 4.11. For n ≥ 0, Padovan-Perrin numbers have the following properties:

(a)
∑n

k=0 S
2
k = −S2

n+3 − S2
n+2 − 2S2

n+1 + 2Sn+3Sn+1 + 2Sn+3Sn+2 + 1.

(b)
∑n

k=0 Sk+1Sk = S2
n+3 + S2

n+2 + S2
n+1 − Sn+3Sn+2 − Sn+3Sn+1 − 1.
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(c)
∑n

k=0 Sk+2Sk = Sn+3Sn+2.

Taking r = 0, s = 2, t = 1 in Theorem 3.1, we obtain the following theorem.

Theorem 4.12. If r = 0, s = 2, t = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 W
2
k = 1

2
((2n+ 11)W 2

n+3 + (2n+ 9)W 2
n+2 + (2n+ 11)W 2

n+1 − 4 (n+ 5)Wn+3Wn+2 − 4
(n+ 6)Wn+3Wn+1 + 4 (n+ 6)Wn+2Wn+1 − 9W 2

2 − 7W 2
1 − 9W 2

0 + 16W2W1 + 20W2W0 −
20W1W0).

(b)
∑n

k=0 Wk+1Wk = 1
2
(−2 (n+ 5)W 2

n+3−2 (n+ 4)W 2
n+2−2 (n+ 6)W 2

n+1+(4n+ 19)Wn+3Wn+2+
(4n+ 23)Wn+3Wn+1− (4n+ 23)Wn+2Wn+1+8W 2

2 +6W 2
1 +10W 2

0 −15W2W1 −19W2W0+
19W1W0).

(c)
∑n

k=0 Wk+2Wk = 1
2
(2 (n+ 5)W 2

n+3+2 (n+ 4)W 2
n+2+2 (n+ 6)W 2

n+1−(4n+ 17)Wn+3Wn+2−
(4n+ 23)Wn+3Wn+1+(4n+ 21)Wn+2Wn+1− 8W 2

2 −6W 2
1 −10W 2

0 +13W2W1 +19W2W0−
17W1W0).

Proof.

(a) We use Theorem 3.1 (a). If we set r = 0, s = 2, t = 1 in Theorem 3.1 (a) then we have

n∑
k=0

W 2
k =

g1(x)

−(x− 1)(x+ 1)(−x+ x2 − 1)(−3x+ x2 + 1)

where

g1(x) = (−(x
3
+ 2x − 1)x

n+3
W

2
n+3 − (x

3
+ 2x − 1)x

n+2
W

2
n+2 − (4x

5 − 7x
3
+ 4x

2
+ 2x − 1)x

n+1
W

2
n+1

+4x
n+5

Wn+3Wn+2 + 4x
n+6

Wn+3Wn+1 − 4(2x − 1)x
n+4

Wn+2Wn+1 + x
2
(x

3
+ 2x − 1)W

2
2

+x(x
3
+ 2x − 1)W

2
1 + (4x

5 − 7x
3
+ 4x

2
+ 2x − 1)W

2
0 − 4x

4
W2W1 − 4x

5
W2W0 + 4(2x − 1)x

3
W1W0)

For x = 1, the right hand side of the above sum formula is an indeterminate form. Now, we
can use L’Hospital rule. Then we get

n∑
k=0

W 2
k =

d
dx

(g1(x))
d
dx

(−(x− 1)(x+ 1)(−x+ x2 − 1)(−3x+ x2 + 1))

∣∣∣∣∣
x=1

=
1

2
((2n+ 11)W 2

n+3 + (2n+ 9)W 2
n+2 + (2n+ 11)W 2

n+1 − 4 (n+ 5)Wn+3Wn+2

−4 (n+ 6)Wn+3Wn+1 + 4 (n+ 6)Wn+2Wn+1 − 9W 2
2 − 7W 2

1 − 9W 2
0 + 16W2W1

+20W2W0 − 20W1W0).

(b) We use Theorem 3.1 (b). If we set r = 0, s = 2, t = 1 in Theorem 3.1 (b) then we have

n∑
k=0

Wk+1Wk =
g2(x)

−(x− 1)(x+ 1)(−x+ x2 − 1)(−3x+ x2 + 1)

where

g2(x) = (2x2xn+3W 2
n+3 + 2xn+4W 2

n+2 + 2x2xn+4W 2
n+1 − (x3 + 4x2 − 1)xn+2Wn+3Wn+2

−(x3 + 4x2 − 1)xn+3Wn+3Wn+1 + (2x4 + 7x3 − 4x2 − 2x+ 1)xn+1Wn+2Wn+1

−2x4W 2
2 − 2x3W 2

1 − 2x5W 2
0 + x(x3 + 4x2 − 1)W2W1 + (x3 + 4x2 − 1)x2W2W0

−(2x4 + 7x3 − 4x2 − 2x+ 1)W1W0)
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For x = 1, the right hand side of the above sum formula is an indeterminate form. Now, we
can use L’Hospital rule. Then we get

n∑
k=0

Wk+1Wk =
d
dx

(g2(x))

d
dx

(−(x − 1)(x + 1)(−x + x2 − 1)(−3x + x2 + 1))

∣∣∣∣∣
x=1

=
1

2
(−2 (n + 5)W

2
n+3 − 2 (n + 4)W

2
n+2 − 2 (n + 6)W

2
n+1 + (4n + 19)Wn+3Wn+2

+ (4n + 23)Wn+3Wn+1 − (4n + 23)Wn+2Wn+1 + 8W
2
2 + 6W

2
1 + 10W

2
0

−15W2W1 − 19W2W0 + 19W1W0).

(c) We use Theorem 3.1 (c). If we set r = 0, s = 2, t = 1 in Theorem 3.1 (c) then we have

n∑
k=0

Wk+2Wk =
g3(x)

−(x− 1)(x+ 1)(−x+ x2 − 1)(−3x+ x2 + 1)

where

g3(x) = (−(4x − 2)x
n+3

W
2
n+3 − x

n+2
(4x − 2)W

2
n+2 − x

n+4
(4x − 2)W

2
n+1 + (−x

3
+ 4x

2
+ 1)x

n+3
Wn+3Wn+2

+(2x
4
+ 7x

3 − 4x
2 − 2x + 1)x

n+1
Wn+3Wn+1 − (2x − 1)

(
−x

3
+ 4x

2
+ 1

)
x
n+2

Wn+2Wn+1

+(4x − 2)x
2
W

2
2 + x(4x − 2)W

2
1 + (4x − 2)x

3
W

2
0 − (−x

3
+ 4x

2
+ 1)x

2
W2W1

−(2x
4
+ 7x

3 − 4x
2 − 2x + 1)W2W0 + x(2x − 1)(−x

3
+ 4x

2
+ 1)W1W0)

For x = 1, the right hand side of the above sum formula is an indeterminate form. Now, we
can use L’Hospital rule. Then we get

n∑
k=0

Wk+2Wk =
d
dx

(g3(x))

d
dx

(−(x − 1)(x + 1)(−x + x2 − 1)(−3x + x2 + 1))

∣∣∣∣∣
x=1

=
1

2
(2 (n + 5)W

2
n+3 + 2 (n + 4)W

2
n+2 + 2 (n + 6)W

2
n+1 − (4n + 17)Wn+3Wn+2

− (4n + 23)Wn+3Wn+1 + (4n + 21)Wn+2Wn+1 − 8W
2
2 − 6W

2
1 − 10W

2
0

+13W2W1 + 19W2W0 − 17W1W0).

From the last theorem, we have the following corollary which gives sum formulas of Pell-Padovan
numbers (take Wn = Rn with Q0 = 1, R1 = 1, R2 = 1).

Corollary 4.13. For n ≥ 0, Pell-Padovan numbers have the following properties:

(a)
∑n

k=0 R
2
k = 1

2
((2n+ 11)R2

n+3 + (2n+ 9)R2
n+2 + (2n+ 11)R2

n+1 − 4 (n+ 5)Rn+3Rn+2 − 4
(n+ 6)Rn+3Rn+1 + 4 (n+ 6)Rn+2Rn+1 − 9).

(b)
∑n

k=0 Rk+1Rk = 1
2
(−2 (n+ 5)R2

n+3 − 2 (n+ 4)R2
n+2 − 2 (n+ 6)R2

n+1 +(4n+ 19)Rn+3Rn+2 +
(4n+ 23)Rn+3Rn+1 − (4n+ 23)Rn+2Rn+1 + 9).

(c)
∑n

k=0 Rk+2Rk = 1
2
(2 (n+ 5)R2

n+3 + 2 (n+ 4)R2
n+2 + 2 (n+ 6)R2

n+1 − (4n+ 17)Rn+3Rn+2 −
(4n+ 23)Rn+3Rn+1 + (4n+ 21)Rn+2Rn+1 − 9).

Taking Wn = Cn with C0 = 3, C1 = 0, C2 = 2 in the last theorem, we have the following corollary
which presents sum formulas of Pell-Perrin numbers.

Corollary 4.14. For n ≥ 0, Pell-Perrin numbers have the following properties:
(a)

∑n
k=0 C2

k = 1
2
((2n + 11)C2

n+3 + (2n + 9)C2
n+2 + (2n + 11)C2

n+1 − 4 (n + 5)Cn+3Cn+2 − 4 (n + 6)Cn+3Cn+1 +

4 (n + 6)Cn+2Cn+1 + 3).

(b)
∑n

k=0 Ck+1Ck = 1
2
(−2 (n + 5)C2

n+3−2 (n + 4)C2
n+2−2 (n + 6)C2

n+1+(4n + 19)Cn+3Cn+2+(4n + 23)Cn+3Cn+1−
(4n + 23)Cn+2Cn+1 + 8).

(c)
∑n

k=0 Ck+2Ck = 1
2
(2 (n + 5)C2

n+3+2 (n + 4)C2
n+2+2 (n + 6)C2

n+1−(4n + 17)Cn+3Cn+2−(4n + 23)Cn+3Cn+1+

(4n + 21)Cn+2Cn+1 − 8).
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Taking r = 0, s = 1, t = 2 in Theorem 3.1, we obtain the following proposition.

Proposition 4.15. If r = 0, s = 1, t = 2 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 W
2
k = 1

2
(W 2

n+3+W 2
n+2+2W 2

n+1−Wn+3Wn+2−2Wn+3Wn+1−W 2
2 −W 2

1 −2W 2
0 +W2W1+

2W2W0).

(b)
∑n

k=0 Wk+1Wk = 1
4
(−W 2

n+3 − W 2
n+2 − 4W 2

n+1 + 2Wn+3Wn+2 + 4Wn+3Wn+1 + W 2
2 + W 2

1 +
4W 2

0 − 2W2W1 − 4W2W0).

(c)
∑n

k=0 Wk+2Wk = 1
2
(Wn+3Wn+2 −W1W2).

From the last Proposition, we have the following Corollary which gives sum formulas of Jacobsthal-
Padovan numbers (take Wn = Qn with Q0 = 1, Q1 = 1, Q2 = 1).

Corollary 4.16. For n ≥ 0, Jacobsthal-Padovan numbers have the following properties:

(a)
∑n

k=0 Q
2
k = 1

2
(Q2

n+3 +Q2
n+2 + 2Q2

n+1 −Qn+3Qn+2 − 2Qn+3Qn+1 − 1).

(b)
∑n

k=0 Qk+1Qk = 1
4
(−Q2

n+3 −Q2
n+2 − 4Q2

n+1 + 2Qn+3Qn+2 + 4Qn+3Qn+1).

(c)
∑n

k=0 Qk+2Qk = 1
2
(Qn+3Qn+2 − 1).

Taking Wn = Ln with L0 = 3, L1 = 0, L2 = 2 in the last Proposition, we have the following Corollary
which presents sum formulas of Jacobsthal-Perrin numbers.

Corollary 4.17. For n ≥ 0, Jacobsthal-Perrin numbers have the following properties:

(a)
∑n

k=0 L
2
k = 1

2
(L2

n+3 + L2
n+2 + 2L2

n+1 − Ln+3Ln+2 − 2Ln+3Ln+1 − 10).

(b)
∑n

k=0 Lk+1Lk = 1
4
(−L2

n+3 − L2
n+2 − 4L2

n+1 + 2Ln+3Ln+2 + 4Ln+3Ln+1 + 16).

(c)
∑n

k=0 Lk+2Lk = 1
2
Ln+3Ln+2.

Taking r = 1, s = 0, t = 1 in Theorem 3.1, we obtain the following Proposition.

Proposition 4.18. If r = 1, s = 0, t = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 W
2
k = 1

3
(−W 2

n+3−4W 2
n+2−4W 2

n+1+4Wn+3Wn+2+2Wn+3Wn+1+2Wn+2Wn+1+W 2
2 +

4W 2
1 + 4W 2

0 − 4W2W1 − 2W2W0 − 2W1W0).

(b)
∑n

k=0 Wk+1Wk = 1
3
(W 2

n+3 +W 2
n+2 +W 2

n+1 −Wn+3Wn+2 +Wn+3Wn+1 − 2Wn+2Wn+1 −W 2
2 −

W 2
1 −W 2

0 +W2W1 −W2W0 + 2W1W0).

(c)
∑n

k=0 Wk+2Wk = 1
3
(2W 2

n+3 + 2W 2
n+2 + 2W 2

n+1 − 2Wn+3Wn+2 − Wn+3Wn+1 − Wn+2Wn+1 −
2W 2

2 − 2W 2
1 − 2W 2

0 + 2W2W1 +W2W0 +W1W0).

From the last proposition, we have the following corollary which gives sum formulas of Narayana
numbers (take Wn = Nn with N0 = 0, N1 = 1, N2 = 1).

Corollary 4.19. For n ≥ 0, Narayana numbers have the following properties:

(a)
∑n

k=0 N
2
k = 1

3
(−N2

n+3 − 4N2
n+2 − 4N2

n+1 + 4Nn+3Nn+2 + 2Nn+3Nn+1 + 2Nn+2Nn+1 + 1).

(b)
∑n

k=0 Nk+1Nk = 1
3
(N2

n+3 +N2
n+2 +N2

n+1 −Nn+3Nn+2 +Nn+3Nn+1 − 2Nn+2Nn+1 − 1).

(c)
∑n

k=0 Nk+2Nk = 1
3
(2N2

n+3 + 2N2
n+2 + 2N2

n+1 − 2Nn+3Nn+2 −Nn+3Nn+1 −Nn+2Nn+1 − 2).

Taking Wn = Un with U0 = 3, U1 = 1, U2 = 1 in the last proposition, we have the following corollary
which presents sum formulas of Narayana-Lucas numbers.

Corollary 4.20. For n ≥ 0, Narayana-Lucas numbers have the following properties:
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(a)
∑n

k=0 U
2
k = 1

3
(−U2

n+3 − 4U2
n+2 − 4U2

n+1 + 4Un+3Un+2 + 2Un+3Un+1 + 2Un+2Un+1 + 25).

(b)
∑n

k=0 Uk+1Uk = 1
3
(U2

n+3 + U2
n+2 + U2

n+1 − Un+3Un+2 + Un+3Un+1 − 2Un+2Un+1 − 7).

(c)
∑n

k=0 Uk+2Uk = 1
3
(2U2

n+3 + 2U2
n+2 + 2U2

n+1 − 2Un+3Un+2 − Un+3Un+1 − Un+2Un+1 − 14).

From the last proposition, we have the following corollary which gives sum formulas of Narayana-
Perrin numbers (take Wn = Hn with H0 = 3, H1 = 0, H2 = 2).

Corollary 4.21. For n ≥ 0, Narayana-Perrin numbers have the following properties:

(a)
∑n

k=0 H
2
k = 1

3
(−H2

n+3 − 4H2
n+2 − 4H2

n+1 + 4Hn+3Hn+2 + 2Hn+3Hn+1 + 2Hn+2Hn+1 + 28).

(b)
∑n

k=0 Hk+1Hk = 1
3
(H2

n+3 +H2
n+2 +H2

n+1 −Hn+3Hn+2 +Hn+3Hn+1 − 2Hn+2Hn+1 − 19).

(c)
∑n

k=0 Hk+2Hk = 1
3
(2H2

n+3 + 2H2
n+2 + 2H2

n+1 − 2Hn+3Hn+2 −Hn+3Hn+1 −Hn+2Hn+1 − 20).

Taking r = 1, s = 1, t = 2 in Theorem 3.1, we obtain the following theorem.

Theorem 4.22. If r = 1, s = 1, t = 2 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 W2
k = 1

63
((6n + 35)W2

n+3+(18n + 90)W2
n+2+(24n + 101)W2

n+1−6 (3n + 16)Wn+3Wn+2−4 (3n + 16)Wn+3Wn+1+

12Wn+2Wn+1 − 29W2
2 − 72W2

1 − 77W2
0 + 78W2W1 + 52W2W0 − 12W1W0).

(b)
∑n

k=0 Wk+1Wk = 1
63

(− (3n + 13)W2
n+3 −3 (3n + 14)W2

n+2 −4 (3n + 16)W2
n+1 +(9n + 45)Wn+3Wn+2 +2 (3n + 22)

Wn+3Wn+1 − 27Wn+2Wn+1 + 10W2
2 + 33W2

1 + 52W2
0 − 36W2W1 − 38W2W0 + 27W1W0).

(c)
∑n

k=0 Wk+2Wk = 1
63

(− (3n + 10)W2
n+3 − (9n + 54)W2

n+2 − 4 (3n + 13)W2
n+1 + (9n + 57)Wn+3Wn+2 + (6n + 17)

Wn+3Wn+1 − 6Wn+2Wn+1 + 7W2
2 + 45W2

1 + 40W2
0 − 48W2W1 − 11W2W0 + 6W1W0).

Proof.

(a) We use Theorem 3.1 (a). If we set r = 1, s = 1, t = 2 in Theorem 3.1 (a) then we have

n∑
k=0

xkW 2
k =

g4(x)

−(x− 1)(4x− 1)(x+ x2 + 1)(2x+ 4x2 + 1)

where

g4(x) = −xn+3(4x3 + 2x2 + x− 1)W 2
n+3 − (4x4 + 10x3 + 3x2 + 2x− 1)xn+2W 2

n+2

−(4x5 + 2x4 + 13x3 + 4x2 + 2x− 1)xn+1W 2
n+1 + 2(2x+ 1)2xn+4Wn+3Wn+2

+4(2x2 + 1)xn+4Wn+3Wn+1 − 4(x− 1)(2x+ 1)xn+4Wn+2Wn+1

+x2(4x3 + 2x2 + x− 1)W 2
2 + x(4x4 + 10x3 + 3x2 + 2x− 1)W 2

1

+(4x5 + 2x4 + 13x3 + 4x2 + 2x− 1)W 2
0 − 2(2x+ 1)2x3W2W1

−4(2x2 + 1)x3W2W0 + 4(2x+ 1)(x− 1)x3W1W0.

For x = 1, the right hand side of the above sum formula is an indeterminate form. Now, we
can use L’Hospital rule. Then we get

n∑
k=0

W 2
k =

d
dx

(g4(x))
d
dx

(−(x− 1)(4x− 1)(x+ x2 + 1)(2x+ 4x2 + 1))

∣∣∣∣∣
x=1

=
1

63
((6n+ 35)W 2

n+3 + (18n+ 90)W 2
n+2 + (24n+ 101)W 2

n+1 − 6 (3n+ 16)Wn+3Wn+2

−4 (3n+ 16)Wn+3Wn+1 + 12Wn+2Wn+1 − 29W 2
2 − 72W 2

1 − 77W 2
0 + 78W2W1

+52W2W0 − 12W1W0).
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(b) We use Theorem 3.1 (b). If we set r = 1, s = 1, t = 2 in Theorem 3.1 (b) then we have

n∑
k=0

xkWk+1Wk =
g5(x)

−(x− 1)(4x− 1)(x+ x2 + 1)(2x+ 4x2 + 1)

where

g5(x) = (2x2 + 1)xn+3W 2
n+3 + 3(2x+ 1)xn+4W 2

n+2 + 4(2x2 + 1)xn+4W 2
n+1

−(8x3 + x2 + x− 1)xn+2Wn+3Wn+2 + 2(−4x3 − x2 + x+ 1)xn+3Wn+3Wn+1

−(−8x5 − 6x4 + 9x3 + 4x2 + 2x− 1)xn+1Wn+2Wn+1 − (2x2 + 1)x2W 2
2

−3(2x+ 1)x3W 2
1 − 4(2x2 + 1)x3W 2

0 + x(8x3 + x2 + x− 1)W2W1

−2(−4x3 − x2 + x+ 1)x2W2W0 + (−8x5 − 6x4 + 9x3 + 4x2 + 2x− 1)W1W0.

For x = 1, the right hand side of the above sum formula is an indeterminate form. Now, we
can use L’Hospital rule. Then we get

n∑
k=0

Wk+1Wk =
d
dx

(g5(x))
d
dx

(−(x− 1)(4x− 1)(x+ x2 + 1)(2x+ 4x2 + 1))

∣∣∣∣∣
x=1

=
1

63
(− (3n+ 13)W 2

n+3 − 3 (3n+ 14)W 2
n+2 − 4 (3n+ 16)W 2

n+1

+(9n+ 45)Wn+3Wn+2 + 2 (3n+ 22)Wn+3Wn+1 − 27Wn+2Wn+1

+10W 2
2 + 33W 2

1 + 52W 2
0 − 36W2W1 − 38W2W0 + 27W1W0)

(c) We use Theorem 3.1 (c). If we set r = 1, s = 1, t = 2 in Theorem 3.1 (c) then we have

n∑
k=0

xkWk+2Wk =
g6(x)

−(x− 1)(4x− 1)(x+ x2 + 1)(2x+ 4x2 + 1)

where

g6(x) = (x + 2)x
n+3

W
2
n+3 + (8x

4
+ 2x

3 − 2x + 1)x
n+2

W
2
n+2 + 4(x + 2)x

n+4
W

2
n+1

−(2x + 1)(4x
3 − x

2
+ x − 1)x

n+2
Wn+3Wn+2 − (−4x

4
+ 7x

3
+ 2x

2
+ 2x − 1)x

n+1
Wn+3Wn+1

+2(x − 1)(4x
3 − x

2
+ x − 1)x

n+2
Wn+2Wn+1 − (x + 2)x

2
W

2
2 − x(8x

4
+ 2x

3 − 2x + 1)W
2
1

−4(x + 2)x
3
W

2
0 + x(2x + 1)(4x

3 − x
2
+ x − 1)W2W1

+(−4x
4
+ 7x

3
+ 2x

2
+ 2x − 1)W2W0 − 2x(x − 1)(4x

3 − x
2
+ x − 1)W1W0.

For x = 1, the right hand side of the above sum formula is an indeterminate form. Now, we
can use L’Hospital rule. Then we get

n∑
k=0

Wk+2Wk =
d
dx

(g6(x))
d
dx

(−(x− 1)(4x− 1)(x+ x2 + 1)(2x+ 4x2 + 1))

∣∣∣∣∣
x=1

=
1

63
(− (3n+ 10)W 2

n+3 − (9n+ 54)W 2
n+2 − 4 (3n+ 13)W 2

n+1

+(9n+ 57)Wn+3Wn+2 + (6n+ 17)Wn+3Wn+1 − 6Wn+2Wn+1

+7W 2
2 + 45W 2

1 + 40W 2
0 − 48W2W1 − 11W2W0 + 6W1W0).

From the last theorem, we have the following corollary which gives sum formulas of third order
Jacobsthal numbers (take Wn = Jn with J0 = 0, J1 = 1, J2 = 1).

Corollary 4.23. For n ≥ 0, third order Jacobsthal numbers have the following properties:
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(a)
∑n

k=0 J
2
k = 1

63
((6n+ 35) J2

n+3 + (18n+ 90) J2
n+2 + (24n+ 101) J2

n+1 − 6 (3n+ 16) Jn+3Jn+2 −
4 (3n+ 16) Jn+3Jn+1 + 12Jn+2Jn+1 − 23).

(b)
∑n

k=0 Jk+1Jk = 1
63
(− (3n+ 13) J2

n+3−3 (3n+ 14) J2
n+2−4 (3n+ 16) J2

n+1+(9n+ 45) Jn+3Jn+2+
2 (3n+ 22) Jn+3Jn+1 − 27Jn+2Jn+1 + 7).

(c)
∑n

k=0 Jk+2Jk = 1
63
(− (3n+ 10) J2

n+3−(9n+ 54) J2
n+2−4 (3n+ 13) J2

n+1+(9n+ 57) Jn+3Jn+2+
(6n+ 17) Jn+3Jn+1 − 6Jn+2Jn+1 + 4).

Taking Wn = jn with j0 = 2, j1 = 1, j2 = 5 in the last theorem, we have the following corollary which
presents sum formulas of third order Jacobsthal-Lucas numbers.

Corollary 4.24. For n ≥ 0, third order Jacobsthal-Lucas numbers have the following properties:

(a)
∑n

k=0 j
2
k = 1

63
((6n+ 35) j2n+3 + (18n+ 90) j2n+2 + (24n+ 101) j2n+1 − 6 (3n+ 16) jn+3jn+2 −

4 (3n+ 16) jn+3jn+1 + 12jn+2jn+1 − 219).

(b)
∑n

k=0 jk+1jk = 1
63
(− (3n+ 13) j2n+3−3 (3n+ 14) j2n+2−4 (3n+ 16) j2n+1+(9n+ 45) jn+3jn+2+

2 (3n+ 22) jn+3jn+1 − 27jn+2jn+1 − 15).

(c)
∑n

k=0 jk+2jk = 1
63
(− (3n+ 10) j2n+3 − (9n+ 54) j2n+2 − 4 (3n+ 13) j2n+1 + (9n+ 57) jn+3jn+2 +

(6n+ 17) jn+3jn+1 − 6jn+2jn+1 + 42).

Taking r = 2, s = 3, t = 5 in Theorem 3.1, we obtain the following proposition.

Proposition 4.25. If r = 2, s = 3, t = 5 then for n ≥ 0 we have the following formulas:
(a)

∑n
k=0 W2

k = 1
495

(37W2
n+3 + 253W2

n+2 + 430W2
n+1 − 182Wn+3Wn+2 − 170Wn+3Wn+1 + 260Wn+2Wn+1 − 37W2

2 −
253W2

1 − 430W2
0 + 182W2W1 + 170W2W0 − 260W1W0).

(b)
∑n

k=0 Wk+1Wk = 1
495

(−17W2
n+3 − 143W2

n+2 − 425W2
n+1 + 97Wn+3Wn+2 + 145Wn+3Wn+1 − 280Wn+2Wn+1 +

17W2
2 + 143W2

1 + 425W2
0 − 97W2W1 − 145W2W0 + 280W1W0).

(c)
∑n

k=0 Wk+2Wk = 1
495

(−8W2
n+3−242W2

n+2−200W2
n+1+133Wn+3Wn+2+10Wn+3Wn+1−190Wn+2Wn+1+8W2

2 +

242W2
1 + 200W2

0 − 133W2W1 − 10W2W0 + 190W1W0).

From the last proposition, we have the following corollary which gives sum formulas of 3-primes
numbers (take Wn = Gn with G0 = 0, G1 = 1, G2 = 2).

Corollary 4.26. For n ≥ 0, 3-primes numbers have the following properties:
(a)

∑n
k=0 G2

k = 1
495

(37G2
n+3 + 253G2

n+2 + 430G2
n+1 − 182Gn+3Gn+2 − 170Gn+3Gn+1 + 260Gn+2Gn+1 − 37).

(b)
∑n

k=0 Gk+1Gk = 1
495

(−17G2
n+3 − 143G2

n+2 − 425G2
n+1 + 97Gn+3Gn+2 + 145Gn+3Gn+1 − 280Gn+2Gn+1 + 17).

(c)
∑n

k=0 Gk+2Gk = 1
495

(−8G2
n+3 − 242G2

n+2 − 200G2
n+1 + 133Gn+3Gn+2 + 10Gn+3Gn+1 − 190Gn+2Gn+1 + 8).

Taking Gn = Hn with H0 = 3,H1 = 2, H2 = 10 in the last proposition, we have the following corollary
which presents sum formulas of Lucas 3-primes numbers.

Corollary 4.27. For n ≥ 0, Lucas 3-primes numbers have the following properties:
(a)

∑n
k=0 H2

k = 1
495

(37H2
n+3 + 253H2

n+2 + 430H2
n+1 − 182Hn+3Hn+2 − 170Hn+3Hn+1 + 260Hn+2Hn+1 − 1402).

(b)
∑n

k=0 Hk+1Hk = 1
495

(−17H2
n+3 − 143H2

n+2 − 425H2
n+1 +97Hn+3Hn+2 +145Hn+3Hn+1 − 280Hn+2Hn+1 +1487).

(c)
∑n

k=0 Hk+2Hk = 1
495

(−8H2
n+3 − 242H2

n+2 − 200H2
n+1 + 133Hn+3Hn+2 + 10Hn+3Hn+1 − 190Hn+2Hn+1 + 1748).

From the last proposition, we have the following corollary which gives sum formulas of modified 3-
primes numbers (take Hn = En with E0 = 0, E1 = 1, E2 = 1).

Corollary 4.28. For n ≥ 0, modified 3-primes numbers have the following properties:
(a)

∑n
k=0 E2

k = 1
495

(37E2
n+3 + 253E2

n+2 + 430E2
n+1 − 182En+3En+2 − 170En+3En+1 + 260En+2En+1 − 108).

(b)
∑n

k=0 Ek+1Ek = 1
495

(−17E2
n+3 − 143E2

n+2 − 425E2
n+1 + 97En+3En+2 + 145En+3En+1 − 280En+2En+1 + 63).

(c)
∑n

k=0 Ek+2Ek = 1
495

(−8E2
n+3 − 242E2

n+2 − 200E2
n+1 + 133En+3En+2 + 10En+3En+1 − 190En+2En+1 + 117).
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4.2 The Case x = −1

In this subsection we consider the special case x = −1.

In this section, we present the closed form solutions (identities) of the sums∑n
k=0(−1)kW 2

k ,
∑n

k=0(−1)kWk+2Wk and
∑n

k=0(−1)kWk+1Wk for the specific case of the sequence
{Wn}.

Taking r = s = t = 1 in Theorem 3.1, we obtain the following proposition.

Proposition 4.29. If r = s = t = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0(−1)kW 2
k = 1

4
((−1)n (W 2

n+3 − 2W 2
n+2 + 3W 2

n+1 − 2Wn+1Wn+3) + W 2
2 − 2W 2

1 + 3W 2
0 −

2W0W2).

(b)
∑n

k=0(−1)kWk+1Wk = 1
4
((−1)n (W 2

n+3 −W 2
n+1 − 2Wn+3Wn+2 + 2Wn+2Wn+1) +W 2

2 −W 2
0 −

2W1W2 + 2W1W0).

(c)
∑n

k=0(−1)kWk+2Wk = 1
4
((−1)n (W 2

n+3−2W 2
n+2−W 2

n+1+2Wn+3Wn+1−4Wn+2Wn+1)+W 2
2 −

2W 2
1 −W 2

0 + 2W2W0 − 4W1W0).

From the above proposition, we have the following corollary which gives sum formulas of Tribonacci
numbers (take Wn = Tn with T0 = 0, T1 = 1, T2 = 1).

Corollary 4.30. For n ≥ 0, Tribonacci numbers have the following properties:

(a)
∑n

k=0(−1)kT 2
k = 1

4
((−1)n (T 2

n+3 − 2T 2
n+2 + 3T 2

n+1 − 2Tn+1Tn+3)− 1).

(b)
∑n

k=0(−1)kTk+1Tk = 1
4
((−1)n (T 2

n+3 − T 2
n+1 − 2Tn+3Tn+2 + 2Tn+2Tn+1)− 1).

(c)
∑n

k=0(−1)kTk+2Tk = 1
4
((−1)n (T 2

n+3 − 2T 2
n+2 − T 2

n+1 + 2Tn+3Tn+1 − 4Tn+2Tn+1)− 1).

Taking Wn = Kn with K0 = 3,K1 = 1,K2 = 3 in the above proposition, we have the following
corollary which presents sum formulas of Tribonacci-Lucas numbers.

Corollary 4.31. For n ≥ 0, Tribonacci-Lucas numbers have the following properties:

(a)
∑n

k=0(−1)kK2
k = 1

4
((−1)n (K2

n+3 − 2K2
n+2 + 3K2

n+1 − 2Kn+1Kn+3) + 16).

(b)
∑n

k=0(−1)kKk+1Kk = 1
4
(−1)n (K2

n+3 −K2
n+1 − 2Kn+3Kn+2 + 2Kn+2Kn+1).

(c)
∑n

k=0(−1)kKk+2Kk = 1
4
((−1)n (K2

n+3 − 2K2
n+2 −K2

n+1 + 2Kn+3Kn+1 − 4Kn+2Kn+1) + 4).

Taking r = 2, s = 1, t = 1 in Theorem 3.1, we obtain the following proposition.

Proposition 4.32. If r = 2, s = 1, t = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0(−1)kW 2
k = 1

15
((−1)n (W 2

n+3−9W 2
n+2+14W 2

n+1+2Wn+3Wn+2+4Wn+2Wn+1−6Wn+3Wn+1)+
W 2

2 − 9W 2
1 + 14W 2

0 + 2W2W1 − 6W2W0 + 4W1W0).

(b)
∑n

k=0(−1)kWk+1Wk = 1
5
((−1)n (W 2

n+3+W 2
n+2−W 2

n+1−3Wn+3Wn+2−Wn+3Wn+1+4Wn+2Wn+1)+
W 2

2 +W 2
1 −W 2

0 − 3W2W1 −W2W0 + 4W1W0).

(c)
∑n

k=0(−1)kWk+2Wk = 1
15
((−1)n (4W 2

n+3−6W 2
n+2−4W 2

n+1−7Wn+3Wn+2+6Wn+3Wn+1−14
Wn+2Wn+1) + 4W 2

2 − 6W 2
1 − 4W 2

0 − 7W2W1 + 6W2W0 − 14W1W0).

From the last proposition, we have the following corollary which gives sum formulas of third-order Pell
numbers (take Wn = Pn with P0 = 0, P1 = 1, P2 = 1).

Corollary 4.33. For n ≥ 0, third-order Pell numbers have the following properties:
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(a)
∑n

k=0(−1)kP 2
k = 1

15
((−1)n (P 2

n+3−9P 2
n+2+14P 2

n+1+2Pn+3Pn+2+4Pn+2Pn+1−6Pn+3Pn+1)−1).

(b)
∑n

k=0(−1)kPk+1Pk = 1
15
((−1)n (P 2

n+3−9P 2
n+2+14P 2

n+1+2Pn+3Pn+2+4Pn+2Pn+1−6Pn+3Pn+1)−
1).

(c)
∑n

k=0(−1)kPk+2Pk = 1
15
((−1)n (4P 2

n+3 − 6P 2
n+2 − 4P 2

n+1 − 7Pn+3Pn+2 + 6Pn+3Pn+1 − 14
Pn+2Pn+1)− 4).

Taking Wn = Qn with Q0 = 3, Q1 = 2, Q2 = 6 in the last proposition, we have the following corollary
which presents sum formulas of third-order Pell-Lucas numbers.

Corollary 4.34. For n ≥ 0, third-order Pell-Lucas numbers have the following properties:

(a)
∑n

k=0(−1)kQ2
k = 1

15
((−1)n (Q2

n+3−9Q2
n+2+14Q2

n+1+2Qn+3Qn+2+4Qn+2Qn+1−6Qn+3Qn+1)+
66).

(b)
∑n

k=0(−1)kQk+1Qk = 1
5
((−1)n (Q2

n+3+Q2
n+2−Q2

n+1−3Qn+3Qn+2−Qn+3Qn+1+4Qn+2Qn+1)+
1).

(c)
∑n

k=0(−1)kQk+2Qk = 1
15
((−1)n (4Q2

n+3 − 6Q2
n+2 − 4Q2

n+1 − 7Qn+3Qn+2 + 6Qn+3Qn+1 − 14
Qn+2Qn+1) + 24).

From the last proposition, we have the following corollary which gives sum formulas of third-order
modified Pell numbers (take Wn = En with E0 = 0, E1 = 1, E2 = 1).

Corollary 4.35. For n ≥ 0, third-order modified Pell numbers have the following properties:

(a)
∑n

k=0(−1)kE2
k = 1

15
((−1)n (E2

n+3−9E2
n+2+14E2

n+1+2En+3En+2+4En+2En+1−6En+3En+1)−
6).

(b)
∑n

k=0(−1)kEk+1Ek = 1
5
((−1)n (E2

n+3+E2
n+2−E2

n+1−3En+3En+2−En+3En+1+4En+2En+1)−
1).

(c)
∑n

k=0(−1)kEk+2Ek = 1
15
((−1)n (4E2

n+3 − 6E2
n+2 − 4E2

n+1 − 7En+3En+2 + 6En+3En+1 − 14
En+2En+1)− 9).

Taking r = 0, s = 1, t = 1 in Theorem 3.1, we obtain the following proposition.

Proposition 4.36. If r = 0, s = 1, t = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0(−1)kW 2
k = 1

5
((−1)n (3W 2

n+3−3W 2
n+2+2W 2

n+1+2Wn+3Wn+2−2Wn+3Wn+1−4Wn+2Wn+1)+
3W 2

2 − 3W 2
1 + 2W 2

0 + 2W2W1 − 2W2W0 − 4W1W0).

(b)
∑n

k=0(−1)kWk+1Wk = 1
5
((−1)n (W 2

n+3−W 2
n+2−W 2

n+1−Wn+3Wn+2+Wn+3Wn+1+2Wn+2Wn+1)+
W 2

2 −W 2
1 −W 2

0 −W2W1 +W2W0 + 2W1W0).

(c)
∑n

k=0(−1)kWk+2Wk = 1
5
((−1)n (2W 2

n+3 − 2W 2
n+2 − 2W 2

n+1 + 3Wn+3Wn+2 + 2Wn+3Wn+1 −
6Wn+2Wn+1) + 2W 2

2 − 2W 2
1 − 2W 2

0 + 3W2W1 − 6W1W0 + 2W2W0).

From the last proposition, we have the following corollary which gives sum formulas of Padovan
numbers (take Wn = Pn with P0 = 1, P1 = 1, P2 = 1).

Corollary 4.37. For n ≥ 0, Padovan numbers have the following properties:

(a)
∑n

k=0(−1)kP 2
k = 1

5
((−1)n (3P 2

n+3−3P 2
n+2+2P 2

n+1+2Pn+3Pn+2−2Pn+3Pn+1−4Pn+2Pn+1)−2).

(b)
∑n

k=0(−1)kPk+1Pk = 1
5
((−1)n (P 2

n+3−P 2
n+2−P 2

n+1−Pn+3Pn+2+Pn+3Pn+1+2Pn+2Pn+1)+1).

(c)
∑n

k=0(−1)kPk+2Pk = 1
5
((−1)n (2P 2

n+3−2P 2
n+2−2P 2

n+1+3Pn+3Pn+2+2Pn+3Pn+1−6Pn+2Pn+1)−
3).
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Taking Wn = En with E0 = 3, E1 = 0, E2 = 2 in the last proposition, we have the following corollary
which presents sum formulas of Perrin numbers.

Corollary 4.38. For n ≥ 0, Perrin numbers have the following properties:

(a)
∑n

k=0(−1)kE2
k = 1

5
((−1)n (3E2

n+3−3E2
n+2+2E2

n+1+2En+3En+2−2En+3En+1−4En+2En+1)+
18).

(b)
∑n

k=0(−1)kEk+1Ek = 1
5
((−1)n (E2

n+3−E2
n+2−E2

n+1−En+3En+2+En+3En+1+2En+2En+1)+
1).

(c)
∑n

k=0(−1)kEk+2Ek = 1
5
((−1)n (2E2

n+3−2E2
n+2−2E2

n+1+3En+3En+2+2En+3En+1−6En+2En+1)+
2).

From the last proposition, we have the following corollary which gives sum formulas of Padovan-Perrin
numbers (take Wn = Sn with S0 = 0, S1 = 0, S2 = 1).

Corollary 4.39. For n ≥ 0, Padovan-Perrin numbers have the following properties:
(a)

∑n
k=0(−1)kS2

k = 1
5
((−1)n (3S2

n+3 − 3S2
n+2 + 2S2

n+1 + 2Sn+3Sn+2 − 2Sn+3Sn+1 − 4Sn+2Sn+1) + 3).

(b)
∑n

k=0(−1)kSk+1Sk = 1
5
((−1)n (S2

n+3 − S2
n+2 − S2

n+1 − Sn+3Sn+2 + Sn+3Sn+1 + 2Sn+2Sn+1) + 1).

(c)
∑n

k=0(−1)kSk+2Sk = 1
5
((−1)n (2S2

n+3 − 2S2
n+2 − 2S2

n+1 + 3Sn+3Sn+2 + 2Sn+3Sn+1 − 6Sn+2Sn+1) + 2).

Taking r = 0, s = 2, t = 1 in Theorem 3.1, we obtain the following theorem.

Theorem 4.40. If r = 0, s = 2, t = 1 then for n ≥ 0 we have the following formulas:
(a)

∑n
k=0(−1)kW2

k = 1
10

((−1)n ((4n + 17)W2
n+3 − (4n + 13)W2

n+2 − (4n + 11)W2
n+1 +4 (n + 5)Wn+3Wn+2 − 4 (n + 6)

Wn+3Wn+1 − 4 (3n + 14)Wn+2Wn+1) + 13W2
2 − 9W2

1 − 7W2
0 + 16W2W1 − 20W2W0 − 44W1W0).

(b)
∑n

k=0(−1)kWk+1Wk = 1
10

((−1)n (2 (n + 5)W2
n+3 − 2 (n + 4)W2

n+2 − 2 (n + 6)W2
n+1

+ (2n + 9)Wn+3Wn+2 − (2n + 11)Wn+3Wn+1 − (6n + 25)Wn+2Wn+1) + 8W2
2 − 6W2

1 − 10W2
0 + 7W2W1 −

9W2W0 − 19W1W0).

(c)
∑n

k=0(−1)kWk+2Wk = 1
10

((−1)n (2 (3n + 11)W2
n+3−2 (3n + 8)W2

n+2−2 (3n + 14)W2
n+1+(6n + 29)Wn+3Wn+2−

(6n + 25)Wn+3Wn+1 − (18n + 81)Wn+2Wn+1) + 16W2
2 − 10W2

1 − 22W2
0 + 23W2W1 − 19W2W0 − 63W1W0).

Proof. The proof can be given exactly as in Theorem 4.12, just take x = −1 after using L’Hospital rule.

From the last theorem, we have the following corollary which gives sum formulas of Pell-Padovan
numbers (take Wn = Rn with Q0 = 1, R1 = 1, R2 = 1).

Corollary 4.41. For n ≥ 0, Pell-Padovan numbers have the following properties:

(a)
∑n

k=0(−1)kR2
k = 1

10
((−1)n ((4n+ 17)R2

n+3 − (4n+ 13)R2
n+2 − (4n+ 11)R2

n+1

+ 4 (n+ 5)Rn+3Rn+2 − 4 (n+ 6)Rn+3Rn+1 − 4 (3n+ 14)Rn+2Rn+1)− 51).

(b)
∑n

k=0(−1)kRk+1Rk = 1
10
((−1)n (2 (n+ 5)R2

n+3 − 2 (n+ 4)R2
n+2 − 2 (n+ 6)R2

n+1 + (2n+ 9)
Rn+3Rn+2 − (2n+ 11)Rn+3Rn+1 − (6n+ 25)Rn+2Rn+1)− 29).

(c)
∑n

k=0(−1)kRk+2Rk = 1
10
((−1)n (2 (3n+ 11)R2

n+3 − 2 (3n+ 8)R2
n+2 − 2 (3n+ 14)R2

n+1

+ (6n+ 29)Rn+3Rn+2 − (6n+ 25)Rn+3Rn+1 − (18n+ 81)Rn+2Rn+1)− 75).

Taking Wn = Cn with C0 = 3, C1 = 0, C2 = 2 in the last theorem, we have the following corollary
which presents sum formulas of Pell-Perrin numbers.

Corollary 4.42. For n ≥ 0, Pell-Perrin numbers have the following properties:

(a)
∑n

k=0(−1)kC2
k = 1

10
((−1)n ((4n+ 17)C2

n+3 − (4n+ 13)C2
n+2 − (4n+ 11)C2

n+1

+ 4 (n+ 5)Cn+3Cn+2 − 4 (n+ 6)Cn+3Cn+1 − 4 (3n+ 14)Cn+2Cn+1)− 131).
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(b)
∑n

k=0(−1)kCk+1Ck = 1
10
((−1)n (2 (n+ 5)C2

n+3 − 2 (n+ 4)C2
n+2 − 2 (n+ 6)C2

n+1 + (2n+ 9)
Cn+3Cn+2 − (2n+ 11)Cn+3Cn+1 − (6n+ 25)Cn+2Cn+1)− 112).

(c)
∑n

k=0(−1)kCk+2Ck = 1
10
((−1)n (2 (3n+ 11)C2

n+3 − 2 (3n+ 8)C2
n+2 − 2 (3n+ 14)C2

n+1

+ (6n+ 29)Cn+3Cn+2 − (6n+ 25)Cn+3Cn+1 − (18n+ 81)Cn+2Cn+1)− 248).

Taking r = 0, s = 1, t = 2 in Theorem 3.1, we obtain the following proposition.

Proposition 4.43. If r = 0, s = 1, t = 2 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0(−1)kW 2
k = 1

16
((−1)n (3W 2

n+3−3W 2
n+2+4W 2

n+1+2Wn+3Wn+2−4Wn+3Wn+1−4Wn+2Wn+1)+
3W 2

2 − 3W 2
1 + 4W 2

0 + 2W2W1 − 4W2W0 − 4W1W0).

(b)
∑n

k=0(−1)kWk+1Wk = 1
16
((−1)n (W 2

n+3 − W 2
n+2 − 4W 2

n+1 − 2Wn+3Wn+2 + 4Wn+3Wn+1 +
4Wn+2Wn+1)− 2W2W1 + 4W2W0 + 4W1W0 +W 2

2 −W 2
1 − 4W 2

0 ).

(c)
∑n

k=0(−1)kWk+2Wk = 1
16
((−1)n (W 2

n+3 −W 2
n+2 − 4W 2

n+1 + 6Wn+3Wn+2 + 4Wn+3Wn+1 − 12
Wn+2Wn+1) +W 2

2 −W 2
1 − 4W 2

0 + 6W2W1 + 4W2W0 − 12W1W0).

From the last proposition, we have the following corollary which gives sum formulas of Jacobsthal-
Padovan numbers (take Wn = Qn with Q0 = 1, Q1 = 1, Q2 = 1).

Corollary 4.44. For n ≥ 0, Jacobsthal-Padovan numbers have the following properties:

(a)
∑n

k=0(−1)kQ2
k = 1

16
((−1)n (3Q2

n+3−3Q2
n+2+4Q2

n+1+2Qn+3Qn+2−4Qn+3Qn+1−4Qn+2Qn+1)−
2).

(b)
∑n

k=0(−1)kQk+1Qk = 1
16
((−1)n (Q2

n+3−Q2
n+2−4Q2

n+1−2Qn+3Qn+2+4Qn+3Qn+1+4Qn+2Qn+1)+
2).

(c)
∑n

k=0(−1)kQk+2Qk = 1
16
((−1)n (Q2

n+3 − Q2
n+2 − 4Q2

n+1 + 6Qn+3Qn+2 + 4Qn+3Qn+1 − 12
Qn+2Qn+1)− 6).

Taking Wn = Dn with D0 = 3, D1 = 0, D2 = 2 in the last proposition, we have the following corollary
which presents sum formulas of Jacobsthal-Perrin numbers.

Corollary 4.45. For n ≥ 0, Jacobsthal-Perrin numbers have the following properties:

(a)
∑n

k=0(−1)kL2
k = 1

16
((−1)n (3L2

n+3−3L2
n+2+4L2

n+1+2Ln+3Ln+2−4Ln+3Ln+1−4Ln+2Ln+1)+
24).

(b)
∑n

k=0(−1)kLk+1Lk = 1
16
((−1)n (L2

n+3−L2
n+2−4L2

n+1−2Ln+3Ln+2+4Ln+3Ln+1+4Ln+2Ln+1)−
8).

(c)
∑n

k=0(−1)kLk+2Lk = 1
16
((−1)n (L2

n+3−L2
n+2−4L2

n+1+6Ln+3Ln+2+4Ln+3Ln+1−12Ln+2Ln+1)−
8).

Taking r = 1, s = 0, t = 1 in Theorem 3.1, we obtain the following proposition.

Proposition 4.46. If r = 1, s = 0, t = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0(−1)kW 2
k = 1

3
((−1)n (W 2

n+3 − 2W 2
n+2 + 2W 2

n+1 − 2Wn+3Wn+1 + 2Wn+2Wn+1) + W 2
2 +

2W 2
0 − 2W 2

1 − 2W2W0 + 2W1W0).

(b)
∑n

k=0(−1)kWk+1Wk = 1
3
((−1)n (W 2

n+3 +W 2
n+2 −W 2

n+1 − 3Wn+3Wn+2

+Wn+3Wn+1 + 2Wn+2Wn+1) +W 2
2 +W 2

1 −W 2
0 − 3W2W1 +W2W0 + 2W1W0).

(c)
∑n

k=0(−1)kWk+2Wk = 1
3
((−1)n (−3Wn+2Wn+1 + 3Wn+3Wn+1) + 3W2W0 − 3W1W0).

From the last proposition, we have the following corollary which gives sum formulas of Narayana
numbers (take Wn = Nn with N0 = 0, N1 = 1, N2 = 1).
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Corollary 4.47. For n ≥ 0, Narayana numbers have the following properties:

(a)
∑n

k=0(−1)kN2
k = 1

3
((−1)n (N2

n+3 − 2N2
n+2 + 2N2

n+1 − 2Nn+3Nn+1 + 2Nn+2Nn+1)− 1).

(b)
∑n

k=0(−1)kNk+1Nk = 1
3
((−1)n (N2

n+3+N2
n+2−N2

n+1−3Nn+3Nn+2+Nn+3Nn+1+2Nn+2Nn+1)−
1).

(c)
∑n

k=0(−1)kNk+2Nk = 1
3
(−1)n (−3Nn+2Nn+1 + 3Nn+3Nn+1).

Taking Wn = Un with U0 = 3, U1 = 1, U2 = 1 in the last proposition, we have the following corollary
which presents sum formulas of Narayana-Lucas numbers.

Corollary 4.48. For n ≥ 0, Narayana-Lucas numbers have the following properties:

(a)
∑n

k=0(−1)kU2
k = 1

3
((−1)n (U2

n+3 − 2U2
n+2 + 2U2

n+1 − 2Un+3Un+1 + 2Un+2Un+1) + 17).

(b)
∑n

k=0(−1)kUk+1Uk = 1
3
((−1)n (U2

n+3+U2
n+2−U2

n+1−3Un+3Un+2+Un+3Un+1+2Un+2Un+1)−
1).

(c)
∑n

k=0(−1)kUk+2Uk = 1
3
(−1)n (−3Un+2Un+1 + 3Un+3Un+1).

From the last proposition, we have the following corollary which gives sum formulas of Narayana-
Perrin numbers (take Wn = Hn with H0 = 3, H1 = 0, H2 = 2).

Corollary 4.49. For n ≥ 0, Narayana-Perrin numbers have the following properties:

(a)
∑n

k=0(−1)kH2
k = 1

3
((−1)n (H2

n+3 − 2H2
n+2 + 2H2

n+1 − 2Hn+3Hn+1 + 2Hn+2Hn+1) + 10).

(b)
∑n

k=0(−1)kHk+1Hk = 1
3
((−1)n (H2

n+3+H2
n+2−H2

n+1−3Hn+3Hn+2+Hn+3Hn+1+2Hn+2Hn+1)+
1).

(c)
∑n

k=0(−1)kHk+2Hk = 1
3
((−1)n (−3Hn+2Hn+1 + 3Hn+3Hn+1) + 18).

Taking r = 1, s = 1, t = 2 in Theorem 3.1, we obtain the following proposition.

Proposition 4.50. If r = 1, s = 1, t = 2 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0(−1)kW 2
k = 1

15
((−1)n (2W 2

n+3−3W 2
n+2+7W 2

n+1−Wn+3Wn+2−6Wn+3Wn+1+4Wn+2Wn+1)+
2W 2

2 − 3W 2
1 + 7W 2

0 −W2W1 − 6W2W0 + 4W1W0)

(b)
∑n

k=0(−1)kWk+1Wk = 1
10
((−1)n (W 2

n+3 + W 2
n+2 − 4W 2

n+1 − 3Wn+3Wn+2 + 2Wn+3Wn+1 + 2
Wn+2Wn+1) +W 2

2 +W 2
1 − 4W 2

0 − 3W2W1 + 2W2W0 + 2W1W0)

(c)
∑n

k=0(−1)kWk+2Wk = 1
30
((−1)n (W 2

n+3−9W 2
n+2−4W 2

n+1+7Wn+3Wn+2+12Wn+3Wn+1−28
Wn+2Wn+1) +W 2

2 − 9W 2
1 − 4W 2

0 + 7W2W1 + 12W2W0 − 28W1W0)

From the above proposition, we have the following corollary which gives sum formulas of third order
Jacobsthal numbers (take Wn = Jn with J0 = 0, J1 = 1, J = 1).

Corollary 4.51. For n ≥ 0, third order Jacobsthal numbers have the following properties:

(a)
∑n

k=0(−1)kJ2
k = 1

15
((−1)n (2J2

n+3−3J2
n+2+7J2

n+1−Jn+3Jn+2−6Jn+3Jn+1+4Jn+2Jn+1)−2).

(b)
∑n

k=0(−1)kJk+1Jk = 1
10
((−1)n (J2

n+3+J2
n+2−4J2

n+1−3Jn+3Jn+2+2Jn+3Jn+1+2Jn+2Jn+1)−
1).

(c)
∑n

k=0(−1)kJk+2Jk = 1
30
((−1)n (J2

n+3−9J2
n+2−4J2

n+1+7Jn+3Jn+2+12Jn+3Jn+1−28Jn+2Jn+1)−
1).

From the above proposition, we have the following corollary which gives sum formulas of third-order
Jacobsthal-Lucas numbers (take Wn = jn with j0 = 2, j1 = 1, j = 5).
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Corollary 4.52. For n ≥ 0, third-order Jacobsthal-Lucas numbers have the following properties:

(a)
∑n

k=0(−1)kj2k = 1
15
((−1)n (2j2n+3 − 3j2n+2 + 7j2n+1 − jn+3jn+2 − 6jn+3jn+1 + 4jn+2jn+1) + 18).

(b)
∑n

k=0(−1)kjk+1jk = 1
10
((−1)n (j2n+3+j2n+2−4j2n+1−3jn+3jn+2+2jn+3jn+1+2jn+2jn+1)+19).

(c)
∑n

k=0(−1)kjk+2jk = 1
30
((−1)n (j2n+3−9j2n+2−4j2n+1+7jn+3jn+2+12jn+3jn+1−28jn+2jn+1)+

99).

Taking r = 2, s = 3, t = 5 in Theorem 3.1, we obtain the following Proposition.

Proposition 4.53. If r = 2, s = 3, t = 5 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0(−1)kW 2
k = 1

825
((−1)n (19W 2

n+3−11W 2
n+2+350W 2

n+1−42Wn+3Wn+2−170Wn+3Wn+1+
280Wn+2Wn+1) + 19W 2

2 − 11W 2
1 + 350W 2

0 − 170W2W0 − 42W2W1 + 280W1W0).

(b)
∑n

k=0(−1)kWk+1Wk = 1
825

((−1)n (17W 2
n+3+77W 2

n+2−425W 2
n+1−81Wn+3Wn+2+65Wn+3Wn+1−

10Wn+2Wn+1) + 17W 2
2 + 77W 2

1 − 425W 2
0 − 81W2W1 + 65W2W0 − 10W1W0).

(c)
∑n

k=0(−1)kWk+2Wk = 1
825

((−1)n (6W 2
n+3−264W 2

n+2−150W 2
n+1+117Wn+3Wn+2+120Wn+3Wn+1−

780Wn+2Wn+1) + 6W 2
2 − 264W 2

1 − 150W 2
0 + 117W2W1 + 120W2W0 − 780W1W0).

From the last proposition, we have the following corollary which gives sum formulas of 3-primes
numbers (take Wn = Gn with G0 = 0, G1 = 1, G2 = 2).

Corollary 4.54. For n ≥ 0, 3-primes numbers have the following properties:

(a)
∑n

k=0(−1)kG2
k = 1

825
((−1)n (19G2

n+3−11G2
n+2+350G2

n+1−42Gn+3Gn+2−170Gn+3Gn+1+280
Gn+2Gn+1)− 19).

(b)
∑n

k=0(−1)kGk+1Gk = 1
825

((−1)n (17G2
n+3+77G2

n+2−425G2
n+1−81Gn+3Gn+2+65Gn+3Gn+1−

10Gn+2Gn+1)− 17).

(c)
∑n

k=0(−1)kGk+2Gk = 1
825

((−1)n (6G2
n+3−264G2

n+2−150G2
n+1+117Gn+3Gn+2+120Gn+3Gn+1−

780Gn+2Gn+1)− 6).

Taking Wn = Hn with H0 = 3,H1 = 2, H2 = 10 in the last proposition, we have the following corollary
which presents sum formulas of Lucas 3-primes numbers.

Corollary 4.55. For n ≥ 0, Lucas 3-primes numbers have the following properties:

(a)
∑n

k=0(−1)kH2
k = 1

825
((−1)n (19H2

n+3−11H2
n+2+350H2

n+1−42Hn+3Hn+2−170Hn+3Hn+1+280
Hn+2Hn+1) + 746).

(b)
∑n

k=0(−1)kHk+1Hk = 1
825

((−1)n (17H2
n+3+77H2

n+2−425H2
n+1−81Hn+3Hn+2+65Hn+3Hn+1−

10Hn+2Hn+1)− 1547).

(c)
∑n

k=0(−1)kHk+2Hk = 1
825

((−1)n (6H2
n+3−264H2

n+2−150H2
n+1+117Hn+3Hn+2+120Hn+3Hn+1−

780Hn+2Hn+1)− 546).

From the last proposition, we have the following corollary which gives sum formulas of modified 3-
primes numbers (take Wn = En with E0 = 0, E1 = 1, E2 = 1).

Corollary 4.56. For n ≥ 0, modified 3-primes numbers have the following properties:

(a)
∑n

k=0(−1)kE2
k = 1

825
((−1)n (19E2

n+3−11E2
n+2+350E2

n+1−42En+3En+2−170En+3En+1+280
En+2En+1)− 34).

(b)
∑n

k=0(−1)kEk+1Ek = 1
825

((−1)n (17E2
n+3+77E2

n+2−425E2
n+1−81En+3En+2+65En+3En+1−

10En+2En+1) + 13).

(c)
∑n

k=0(−1)kEk+2Ek = 1
825

((−1)n (6E2
n+3−264E2

n+2−150E2
n+1+117En+3En+2+120En+3En+1−

780En+2En+1)− 141).
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4.3 The case x = 1 + i

In this subsection we consider the special case x = 1 + i.

Taking x = 1 + i, r = s = t = 1 in Theorem 3.1, we obtain the following Proposition.

Proposition 4.57. If x = 1 + i, r = s = t = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0(1+ i)kW 2
k = 1

−7+28i
((1 + i)n ((6+ 14i)W 2

n+3 + (28+ 22i)W 2
n+2 + (27− i)W 2

n+1 + (−24−
32i)Wn+3Wn+2+(−8−16i)Wn+3Wn+1+(−8+16i)Wn+2Wn+1)−(10 + 4i)W 2

2−(25− 3i)W 2
1−

(13− 14i)W 2
0 + (28 + 4i)W2W1 + (12 + 4i)W2W0 − (4 + 12i)W1W0).

(b)
∑n

k=0(1+ i)kWk+1Wk = 1
−7+28i

((1 + i)n ((−6−2i)W 2
n+3+(−16−8i)W 2

n+2+(−4−8i)W 2
n+1+

(18 + 12i)Wn+3Wn+2 + (−2 + 14i)Wn+3Wn+1 + (11 − 25i)Wn+2Wn+1) + (4− 2i)W 2
2 +

(12− 4i)W 2
1 + (6 + 2i)W 2

0 − (15− 3i)W2W1 − (6 + 8i)W2W0 + (7 + 18i)W1W0).

(c)
∑n

k=0(1+i)kWk+2Wk = 1
−7+28i

((1 + i)n ((−4+4i)W 2
n+3+(4−10i)W 2

n+2−8W 2
n+1+10iWn+3Wn+2+

(9−11i)Wn+3Wn+1+(4−2i)Wn+1Wn+2)−4iW 2
2+(4− 4i)W 2

0+(3 + 7i)W 2
1−(5 + 5i)W2W1+

(1 + 10i)W2W0 + (−1 + 3i)W1W0).

From the above proposition, we have the following corollary which gives sum formulas of Tribonacci
numbers (take Wn = Tn with T0 = 0, T1 = 1, T2 = 1).

Corollary 4.58. For n ≥ 0, Tribonacci numbers have the following properties:

(a)
∑n

k=0(1 + i)kT 2
k = 1

−7+28i
((1 + i)n ((6 + 14i)T 2

n+3 + (28 + 22i)T 2
n+2 + (27 − i)T 2

n+1 + (−24 −
32i)Tn+3Tn+2 + (−8− 16i)Tn+3Tn+1 + (−8 + 16i)Tn+2Tn+1)− 7 + 3i).

(b)
∑n

k=0(1 + i)kTk+1Tk = 1
−7+28i

((1 + i)n ((−6 − 2i)T 2
n+3 + (−16 − 8i)T 2

n+2 + (−4 − 8i)T 2
n+1 +

(18 + 12i)Tn+3Tn+2 + (−2 + 14i)Tn+3Tn+1 + (11− 25i)Tn+2Tn+1) + 1− 3i).

(c)
∑n

k=0(1+i)kTk+2Tk = 1
−7+28i

((1 + i)n ((−4+4i)T 2
n+3+(4−10i)T 2

n+2−8T 2
n+1+10iTn+3Tn+2+

(9− 11i)Tn+3Tn+1 + (4− 2i)Tn+1Tn+2)− 2− 2i).

Taking Wn = Kn with K0 = 3,K1 = 1,K2 = 3 in the above proposition, we have the following
corollary which presents sum formulas of Tribonacci-Lucas numbers.

Corollary 4.59. For n ≥ 0, Tribonacci-Lucas numbers have the following properties:

(a)
∑n

k=0(1 + i)kK2
k = 1

−7+28i
((1 + i)n ((6 + 14i)K2

n+3 + (28 + 22i)K2
n+2 + (27− i)K2

n+1 + (−24−
32i)Kn+3Kn+2 + (−8− 16i)Kn+3Kn+1 + (−8 + 16i)Kn+2Kn+1)− 52 + 105i).

(b)
∑n

k=0(1+ i)kKk+1Kk = 1
−7+28i

((1 + i)n ((−6− 2i)K2
n+3 + (−16− 8i)K2

n+2 + (−4− 8i)K2
n+1 +

(18 + 12i)Kn+3Kn+2 + (−2 + 14i)Kn+3Kn+1 + (11− 25i)Kn+2Kn+1) + 24− 13i).

(c)
∑n

k=0(1+i)kKk+2Kk = 1
−7+28i

((1 + i)n ((−4+4i)K2
n+3+(4−10i)K2

n+2−8K2
n+1+10iKn+3Kn+2+

(9− 11i)Kn+3Kn+1 + (4− 2i)Kn+1Kn+2) + 30 + 19i).

Corresponding sums of the other third order generalized Tribonacci numbers can be calculated
similarly.

5 CONCLUSION

Recently, there have been so many studies of the
sequences of numbers in the literature and the
sequences of numbers were widely used in many
research areas, such as architecture, nature,
art, physics and engineering. In this work, sum

identities were proved. The method used in this
paper can be used for the other linear recurrence
sequences, too. We have written sum identities
in terms of the generalized Tribonacci sequence,
and then we have presented the formulas as
special cases the corresponding identity for the
Tribonacci, Tribonacci-Lucas, Padovan, Perrin
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numbers and the other third order recurrence
relations. All the listed identities in the corollaries
may be proved by induction, but that method of
proof gives no clue about their discovery. We
give the proofs to indicate how these identities,
in general, were discovered.

Computations of the Frobenius norm, spectral
norm, maximum column length norm and
maximum row length norm of circulant (r-
circulant, geometric circulant, semicirculant)
matrices with the generalized m-step Fibonacci
sequences require the sum of the squares of
the numbers of the sequences. Our future work
will be investigation of the closed forms of the
sum formulas for the squares of generalized
Tetranacci numbers.
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Bağıntısının Özellikleri ve Bazı
Uygulamaları, Selçuk Üniversitesi, Fen
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