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Abstract 

 
The interest of most process engineers in industries is usually to optimize the yield of their processes. Not 

until 1951, imprecise methodologies were used in industries for this purpose. However, in 1951, G. E. P. 

Box and K. B. Wilson invented the technique of Response Surface Methodology (RSM) as one used for 

the optimization of the yield of processes. Being an initial idea, this paper has considered RSM as a 

foundational idea. In particular, it criticizes this foundational idea from the angle of its intuitive approach 

to searching for near-optimal settings of industrial processes, should such processes fail to run at optimal 

settings. RSM uses the tools of canonical transformation and analysis (a trial-and-error routine) for this 

search. Regardless, the foundational response surface methodology is acknowledged to be primarily 

efficient for determining the optimum response. 

 

 

Keywords: Foundational response surface methodology; near-optimal settings; canonical transformation; 

canonical analysis. 
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1 Introduction 

 
Response surface methodology is a collection of mathematical and statistical techniques useful for analyzing 

problems where several factors influence a response variable and the goal is to optimize (maximize or 

minimize) this response [1]. Response surface methodology is an efficient experimental design technique, 

invented by [2] for this purpose. The foundational response surface methodology is executed in two broad 

stages. The first stage locates the optimum (maximum or minimum) operating setting which yields the 

optimum response; whereas the second stage explores the region around the optimum operating setting for 

near-optimal operating conditions. 

 

The stage of locating the optimum (maximum or minimum) operating setting involves implementing a 

sequence of routines. This sequence of routines starts with planning and running a factorial or fractional 

factorial design around the current operating condition [3,4,5,6]. Next, a linear model (with no interaction or 

quadratic terms) is fit to the data; and, thereafter, the path of steepest ascent (or descent) is determined 

[7,8,9]. Following this, several tests are run on the path of steepest ascent until response no longer improves 

[5,10,11]. The operating setting at which response no longer improves indicates the presence of large 

curvature in the system; and this implies that the process is in the optimal region [11,12]. In this region, 

design, run and fit a quadratic model using least squares technique. Based on this quadratic model, locate the 

optimal setting of the factors using classical derivative technique [11,12]. 

 

However, should the tests on the path of steepest ascent (or descent) indicate little or no curvature in the 

system, the entire process must be repeated from the beginning since such a result indicates that the 

experiment is remote from the optimum [5,13,14]. But, according to [8,11], if this is not the case, experience 

shows that the located optimal setting usually enables process engineers in industries to determine the levels 

at which sensitive factors of their processes can be positioned in other to maximize yield (e.g. volume or 

quality of a product) or minimize yield (e.g. cost of production or waste from production). 

 

Indeed, obtaining the optimum operating condition indicates an end to the first stage of response surface 

methodology [15,16,5,17]. But often times, circumstances such as drop in efficiency of machines overtime 

and sporadic fluctuations in voltage usually initiate momentary drifts away from the optimum operating 

condition that, in turn, affects the nature of the yield especially within durations prior to the fixing of such 

machines or adjustments of such fluctuations. In view of such set-back, it becomes imperative for process 

engineers to manage the situation using carefully selected factors settings that are near-optimal in order to 

maintain near-optimality of the process yield. According to [18,19,20], making such selections involves 

exploring the optimal region for near-optimal settings; hence, the second stage of response surface 

methodology. The foundational procedure of response surface methodology explores the optimal region 

using the technique of canonical analysis. This paper is concerned with critically reviewing the technique of 

canonical analysis. 

 

2 The Foundational Response Surface Methodology 

 
Once the quadratic model for the response surface is obtained from the first stage discussed previously, the 

two-staged process of the foundational response surface methodology reduces to performing the following 

routines: 

 

2.1 Locating the optimal setting of the factors using classical derivative technique 

 
In matrix notation we write the quadratic model of the response surface as: 

 

xBxbxβy TT

0  ˆˆ                                                                                                    (1) 
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where: 
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That is, b  is a vector of the first-order regression coefficients and B  is a symmetric matrix whose main 

diagonal elements are the pure quadratic coefficients and whose off-diagonal elements are one-half of the 

mixed quadratic coefficients. Differentiating equation (1), and equating the derivate to zero gives: 

 

                                                                                                                             (2) 

 

The optimal setting is the solution to equation (2); that is:  

bB
2

1
x 1

0


                                                                                                                       (3)

 

 

On substituting for equation (3) in equation (1), the expected response at the optimal setting is obtained as: 

bx
2

1
βy T

000  ˆˆ
                                                                                                                   (4)

 

 

2.2 Exploring the optimal region around the optimal setting  

 
In order to explore the optimal region around the optimal setting for near-optimal settings, the second stage 

of the foundational response surface methodology usually starts with characterizing the obtained optimal 

setting. To characterize the obtained optimal setting it transforms the fitted model to a new coordinate 

system with the origin at the optimal setting, and then rotates the axes of this system until they are parallel to 

the principal axes of the fitted response surface [15,8,1]. Fig. 1 illustrates this transformation. 

 

 

 

Fig. 1. Canonical form of an SOM 
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This results in the fitted model 

 

2
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2
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2

110 wλwλwλyy  ˆˆ                                                                               (5)
 

 

where the s'w i  are the transformed independent variables and s'
i

λ  are just the eigen-values or 

characteristic roots of the matrix B . We call equation (5) the canonical form of the model. 

 

The nature of the response surface can be determined from the optimal setting and the sign and magnitude of 

the s'
i

λ  [5,6]. First, suppose that the stationary point is within the region of exploration for fitting the 

SOM. If the s'
i

λ  are all positive then 
0x  is a point of minimum response [6,11,1]. If the s'

i
λ  are all 

negative then 
0x  is a point of maximum response. If the s'

i
λ  have different signs then 

0x  is a saddle point 

[5,6,1]. Furthermore the surface is steepest in the 
iw  direction for which the absolute values of the s'

i
λ  are 

the greatest [7]. If one or more of the s'
i

λ  are very small, then the system is insensitive to the variable 
iw . 

This type of surface is called a stationary ridge [11,1]. Fig. 2 illustrates it. 
 

 

 

Fig. 2. A Stationary ridge system 

 

If the stationary point is far outside the region of exploration for fitting the SOM, and one or more iλ  is near 

zero, then the surface may be a rising ridge. Fig. 3 illustrates a rising ridge for 2k   variables with 
1λ  near 

zero and 
2λ  negative. In this type of ridge system, we cannot draw inferences about the true surface or the 

stationary point since it is outside the region where we have fit the model. However, further exploration in 

the 
1w  direction is warranted. If 

2λ  had been positive we would call this system a falling ridge.  

 

 

 

Fig. 3. A rising ridge system 



 
 
 

Usen et al.; AJPAS, 8(2): 1-16, 2020; Article no.AJPAS.58405 

 

 

 

5 
 
 

However, in some response surface problems it may be necessary to find the relationship between the 

canonical variables and the design variables [5,21]. This is particularly true if it is impossible to operate the 

process at the stationary point. According to [1,17], exploration in the canonical form requires converting 

points in the canonical variable space to points in the design variable space. In general both types of 

variables are related by 
 

 0
T xxMw                                                                                                                  (6)

 

 

where M  is a kk  orthogonal matrix. The columns of M  are the normalized eigen-vectors associated with 

the 
i
λ . That is if 

im  is the ith  column of M  then 
im  is the solution to 

 

  0mIλB ii                                                                                                                           (7)
 

 

for which 

 

1=m∑
k

1j=

2
ji

 

 

2.3 Illustrating the deficiency of foundational RSM approach 
 

The contact process is a method of producing sulfuric acid in the high concentrations needed for industrial 

processes [22]. A case study in [23] shows that the yield of a chemical process (contact process) is studied. 

The chemical engineer had chosen three controllable variables (temperature, pressure and time) that 

influenced the yield of his process each at a high and low level. He was interested in determining the 

operating conditions that maximize the yield of his process. He was operating the process with reaction 

temperature of 450 degree Celsius, pressure of 1.0 atmosphere and time of 30 minutes resulting in yield 

around 97 percent. Since it was unlikely that this region contained the optimum, an FOM was fit and the 

MSA applied. We decided that the region of exploration for fitting the FOM should be (445, 455) degree 

Celsius of temperature, (0.9, 1.1) Atmosphere of pressure and (29, 31) minutes of time. To simplify the 

calculations, we coded the independent variables to a (-1, 1) interval. Thus, if 
1ξ  denotes the natural variable 

temperature, 
2ξ  denotes the natural variable pressure and 

3ξ  denotes the natural variable time, then the 

coded variables are 
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The quadratic model this problem is given as: 
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Hence, from the above quadratic model, the optimal setting is obtained as: 
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That is ,  and . In terms of the natural variables 

the stationary point is  
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which yields   . 

 

Hence, the predicted response at the optimal setting becomes . 

 

 

 

To further characterize the stationary point we obtain the canonical form the response equation above. The 

Eigen values 
1λ , 

2λ  and 
3λ   are the roots of the determinant equation 

 

 

 

which reduces to 

 

 

 

Thus the canonical form of the fitted model is: 

 

 

 

Since 
1λ , 

2λ  and 
3λ  are negative and the stationary point is within the region of exploration, we conclude 

that the stationary point is a maximum. 

 

However, as an illustration of the deficiency of the foundational response surface methodology discussed 

previously, suppose that a process engineer could not operate the process at 456.475289ξ1  , 

063251445.12ξ  and 99060694.303ξ owing to machine deterioration overtime. If we now wish to 

slightly drift from the optimal setting to a point of lower cost, but without large losses in process yield, then 

the canonical form of the model indicates that the surface is least sensitive to yield loss in the 
1w  direction. 

  

Exploration of the canonical form requires converting points in the  321 w,w,w  space to points in the 

 321 x,x,x  space. Using the quadratic model in the design variables above, we make the following 

illustration. For , we have: 
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We wish to obtain the normalized solution to these equations, that is, the one for which 
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We now use . Thus, equation (7) becomes 
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We now use . This gives: 
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This yields the normalized solutions 

 

 

 

 

 

 

 

which is the third column of the M  matrix. Thus, we have 
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The relationship between the w  and x  variables is 

 

 

 

If the process engineer wished to explore the response surface in the vicinity of the optimal setting, he could 

determine appropriate points to take observations in the ( )
321 w,w,w   space and then use the above 

relationship to convert these points into the ( )
321 x,x,x  space so that the runs may be made. But, clearly, 

this procedure ultimately depends on the experience or intuition of the process engineer, which may be 

wrong. 

 

3 Deficiency of the Foundational RSM Approach 

 
Using the existing RSM procedure ultimately requires the conversion of points in the canonical variable 

space to points in the design variable space in other to explore the optimal region for near-optimal factors 

setting. How can one precisely select points in the canonical variable space if not by gambling or intuition 

based on the experience of the process engineers? 

 

More so, the selected points in the canonical variable space are converted to points in the design variable 

space using equation (6) that has no unique solution. This procedure of the fundamental response 

methodology invariably implies that the process engineer can only but gamble with options of near-optimal 

factors settings should it become difficult to operate at the optimum operating condition owing to machine 

deterioration, drop in machine efficiency, voltage fluctuations, etc. This process of gambling is often time-

consuming and does not guarantee precision in the selection of near-optimal factors settings. Need therefore 

arises for the advancement of the existing fundamental response methodology to curb this problem. 

 

4 Conclusion 

 
In conclusion, the exploration of optimal region for near-optimal settings via the foundational response 

surface methodology is achieved with canonical transformation procedure. This procedure is more or less an 

intuitive-dependent process; and, hence, gives little or no assurance of precision. This trend, therefore, 

prompts the need for alteration/advancement of the foundational response surface methodology in order to 

enable process engineer access near-optimal factors settings within the optimal region. We, therefore, 

recommend the procedure of [23] as one means to overcoming this pitfall. 
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