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ABSTRACT 
 

Computing the homology of a group is a fundamental question and can be a very difficult task. A 
complete understanding of all the homology groups of mapping class groups of surfaces and 3-
manifolds remains out of reach at present time. It is imperative that we give the universal 
coefficient theorem the supposed needed attention. In this article, we study some product 
topologies as well as the kiinneth formula for computing the (co) homology group of product 
spaces. The paper begins with study on the algebraic background with specific definitions and 
extends into four theorems considered as the Universal Coefficient Theorem. Though this article 
does not prove the theorems, yet much is done on some properties of each of these theorems, 
which is enough for the calculation of (co) homology groups. 
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1. INTRODUCTION 

 
According to Soulie [1], computing the homology 
of a group is a fundamental question and can be 
a very difficult task. From the theory of 
topological spaces emerged, algebraic topology. 
Objects are classified according to the nature of 
their connectedness [2]. At the elementary level, 
algebraic topology separates naturally into the 
two broad channels of homology and homotopy. 
With a simple dualization in the definition of 
homology, cohomology an algebraic variant of 
homology is formed [3]. It is therefore not 

surprising that cohomology groups ��(�) satisfy 
axioms much like the axioms for homology, 
except that induced homomorphisms go in the 
opposite direction as a result of the dualization. 
The basic difference between homology and 
cohomology is that, cohomology groups are 
contravariant functors while homology groups are 
covariant. In terms of internal study, however, 
there is not much difference between homology 
groups and cohomology groups. The homology 
groups of a space determine its cohomology 
groups, and the converse holds at least when the 
homology groups are finitely generated. What is 
a little surprising is that, contravariance leads to 
extra structure in cohomology [3]. 

 
2. PRELIMINARIES 

 
2.1 Exactness of a Sequence 

 
Definition 1: For a given pair of homomorphism 

� �→  
 �→ � is exact at N if
� (�) = ker(�). 
Hence a sequence: 
 

 . . → ����  →   ��  →  ����  → ����  → ⋯  

 
is exact if it is actually exact at every, ��, that is 
between two homomorphisms. 

 

Proposition: A sequence 0 → � �→  
  is exact if 
provided it is injective (1 to 1). Furthermore, a 

sequence 
 �→  � → 0 is exact if and only if g is 
surjective (onto) [4]. 

 
Proof: A sequence being exact has its 
implication, that is, kernel x is equal to the image 
of the homomorphism 0 → M, which is zero. 
There is an equivalence relation to the injectivity 
of homomorphism x [4]. Similarly, the kernel of 

zero homomorphism Q → 0 is Q, and �(
) = � if 
and only if y is surjective. 
 

2.2 Product Structures of Abelian Groups 
 
2.2.1 Tensor product 
 
Definition 2: Let M and N be two abelian groups 
then the tensor product denoted by M⊗N is 
defined to be the abelian group with generators.  
 

m⊗n for  m ∈ M, n ∈ N, and relations 
(m + m′) ⊗ n = m⊗ n + m′⊗ n and 
m⊗ (n + n′) = m⊗ n + m⊗ n′.[5] 

 

So the zero element of M ⊗N is 0⊗0 = 0⊗n = 
m⊗0, and − (m⊗ n) = −m⊗ n = m⊗ (−n) [6]. 
 

Hence given the direct sums,

1 2 3
.....M m m m= ⊕ ⊕ ⊕  and 

1 2 3
.....N n n n= ⊕ ⊕ ⊕

i

i
M M=∑ and

j

j
N N=∑  then there exists an isomorphism 

,

i J

i j

M N M N⊗ ≅ ⊗∑ [7]. 

 

Tensor product satisfies the following elementary 
properties 
 

1.  M⊗ N ≈ M⊗ N.  
2.  (M⊗ N) ⊗ Q ≈ M ⊗ (⊗ Q). 

3. ( ) (M )i i iM N N⊕ ⊗ ≈ ⊕ ⊗  

4.  Z⊗M ≈. M⊗ Z≈ M.  

5.  
nZ ⊗M ≈ M/nM.  

6.  A pair of homomorphisms f: M→M′ and g: 
N→N′ induces a homomorphism f ⊗ g:M⊗ 
N→M′⊗N′ via (f ⊗g) (m⊗ n) = f(m)⊗g(n) 
[8]. 

7.  A bilinear map �: M×N→Q induces a 
homomorphism M⊗N→Q sending m ⊗ n 
to  �(m, n). 

 

In order to compute the tensor products of finitely 
generated abelian groups, properties1 to 5 may 
be employed. Properties 1,2,3,6 and 7 remain 
valid for tensor products of R-modules [9]. 
 

2.3 Homomorphism 
 
Definition 3: Let M, N be two abelian groups. A 
mapping �: � → 
 is called homomorphism if for 
all �, � �, �(��) = �(�)�(�). 
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For abelian groups M and N, we obtain the 
abelian group Hom(M, N) of the homomorphism 

of M and N. Particularly, given that 
i

i
M M=∑

and 
j

j
N N=∑ are direct sums as indicated, 

then �!�(�, 
) ≅
,

( , )
i j

i j

Hom M M∑  

 

Therefore, it is important to note that for any two 
finitely generated abelian groups M and N the 

following relations hold (over Z ):∀ $, % ℤ 

 

1. �!�( Z , �) ≅ � 

2.�!�( Z , Z ) ≅ Z  

3. �!�( Z ,
vZ ) ≅

vZ  

4. �!�( vZ , Z) ≅ 0 

5. �!�(ℤ' , kZ )≅ ℤ(',() 
 

2.4 Torsion Product 

 
Definition 4: Given that M and N are abelian 
groups, an abelian group called their torsion 

product over Z , is given by )!* (�. 
) will be 
determined by the torsion part of M and N. That 
is, their respective subgroups consisting of the 
elements whose integral multiples become 0 for 
some integers [3]. 
 

Hence if M and N are 
i

i
M M=∑ and 

j

j
N N=∑ , then the torsion product  

 

)!*(�, 
) ≅ ∑ )!*(�� , 
,). 
 

It should be noted that, for any abelian groups M 
and N, )!*(�, 
) ≅ )!*(
, �).  
 

For a given abelian group M, 
 

)!*(ℤ, �) ≅ )!*(�, ℤ) = 0 
 

Torsion product of two finitely generated abelian 
groups may be determined using the following 
relations; 
 

)!*(ℤ, ℤ) = 0 

)!*(ℤ, ℤ') ≅ )!*(ℤ' , ℤ) = 0 

)!*(ℤ' , ℤ() ≅ )!*ℤ(',() 
 

2.5 Extensions 
 
Definition 5: Given two abelian groups, M and 
N, an extension of M by N is a group together 
with an exact sequence of the form: 
 

0→ N → Q → M→0 [6] 
 

and is denoted by -�.(�, 
) for equivalent 
classes of extension of N by M which determine 
an abelian group [Hatcher, 2002]. 
 

Moreover, if they are direct sums, 
i

i
M M=∑

and 
j

j
N N=∑  then it can be said that there 

exists an isomorphism: 
 

,

(M, N) ( , N )
i j

i j

Ext Ext M≅∑  

Lemma: For any abelian group M,  
 

-�.(ℤ, �) = 0 
 

It also follows that the following relations are 
equivalent: 
 

-�.(ℤ, ℤ) ≅ -�.(ℤ, ℤ') = 0 
-�.(ℤ' , ℤ) ≅ ℤ' 
-�.(ℤ' , ℤ() ≅ ℤ(',() 

 

3. MAIN THRUST 
 
3.1 The Kiinneth Formula for (co) 

Homology 
 
Let / × 1 be product spaces of topological 
spaces / 234 1 given their respective 
(co)homology groups.  
 
Theorem 1: For each p, there exists a natural 
isomorphism 
 

ℎ6(/) ≅ ℎ7(8̅(/)), 
 
In this regard, the left-side is the axiomatic 
homology of all the cell complex X which gives 

rise to the chain complex 8̅(/) computed 
algebraically. 
 
The tensor product of the respective chains of 
/ 234 1 can be regarded naturally as a chain on 
X x Y, which induces a homomorphism: 
 

×∶  �6(/; ℤ) ⊗ �<(1; ℤ) → �6�<(/ × 1; ℤ) 
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Similarly, we now get the induced 
homomorphism:  
 

×∶  �6(/; ℤ) ⊗ �<(1; ℤ) → �7�<(/ × 1; ℤ) 
 
It can therefore be said that these maps are 
induced by the cross product and the map 
induced by the cross product is injective [6]. The 
following theorems affirm that. 
 
Theorem 2:  

 
�=(/ × 1; ℤ) ≅ ∑ �77�<>= (/; ℤ) for the homology 

kiinneth formula: 

 

⊗ �<(1; ℤ) ⊗ ? )!*(�6(/; ℤ), �<(1; ℤ))
7�<�=��

 

 
Theorem 3: 
 
�=(/ × 1; ℤ) ≅ ∑ �7(/; ℤ)7�<>=  for the 

cohomology kiinneth formula: 
 

⊗ �<(1; ℤ) ⊗ ? )!*(�7(/; ℤ), �<(1; ℤ))
7�<>=��

 

 
3.2 Cup Product 
 
For a topological space X, the diagonal map 

 
∆∶ / → / × /, 

 
Transforming �   / .! (�, �)  / × /, is 
continuous. Hence the composition of the cross 
product and the induced map ∆∗, 
 

�7(/; �) × �<(/; �) ×→ �7�<(/ × /; �) ∆∗
→ �7�<(/; �), 

 
This defines a homomorphism 

 
B ∶  �7(/; �) × �<(/; �) →  �7�<(/, �) 

 
Hence for2   �7(/; �) 234 C   �<(/; �), we 
define their cup product 2 ∪ C by: 
 

2 ∪ C ∪= ∆∗(2 � C)  �7�<(/; �). 
 

There is an implication in the definition. That is, 
the structure induced on a cohomology theory by 
the cup product is homotopy invariant. The cup 
products satisfy the following properties:  
 

For 2   �7(/; �), C   �<(/; �), E   �F(/; �)  
 
(2 ∪ C) ∪ E = 2 ∪ (C ∪ E), 2 ∪ C = (−1)7<(C ∪ 2); 

 

For a map I ∶ / → 1, I∗(2 ∪ C) = I∗(2) ∪
I∗(C). 

 

We see a product- preserving homomorphism 
in  I∗.  
 

The cohomology group  
 

�∗(/; �) = ∑ �7(/, J)7  equipped with a 

product structure has become a ring.  
 

3.3 The Universal Coefficient Theorem 
 
In homology the universal coefficient theorem is 
a special case of the kiinneth theorem [10]. Now 
let us look at these four formulae considered as 
the universal coefficient theorem. By reminding 
ourselves about the product structures of abelian 
groups, the easier it is for us to comprehend 
these theorems. 
 

Theorem 4:  
 

From the corresponding integral homology and 
the torsion product, we can calculate homology 
over a general coefficient group M: 
 

�=(/; �) ≅ �=(/; ℤ) ⊗ � ⊕ )!*(�=��(/; ℤ); �). 
 
Theorem 5:  
 
Using the corresponding integral homology and 
the extension product, we may also calculate 
cohomology over a general coefficient group M: 
 
�=(/; �) ≅ �!�(�=(/; ℤ) ⊗ � ⊕ -�.(�=��(/; ℤ); �). 
 
Theorem 6: 
 
We can compute cohomology over a general 
coefficient group M from the integral cohomology 
and the torsion product: 
 
�=(/; �) ≅ �=(/; ℤ) ⊗ � ⊕ )!*(�=��(/; ℤ); �). 
 
Theorem 7:  
 

From the integral cohomology and the extension 
product, homology over a general coefficient 
group M can also be computed. 
 

4. CONCLUSION  
 

The general observation made so far is that, in 
our quest to look more into abelian groups such 
as M and N for the sake of this article as defined 
from the beginning, the tensor product, 
Homomorphism, torsion product and extension 
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has to be defined. It must also be noted that 
cohomology groups become rings using the 
structure of a cup product. 
 

The identification of tensor products of respective 
homology and cohomology groups belonging to 
two topological spaces with the cohomology 
groups of the product spaces may be used. 
Cohomology groups of product spaces fall out 
from kiinneth formula and can be inferred from 
the product structures that, cross product 
homomorphism is injective. 
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