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Abstract

Some stochastic epidemiological models are less significant. They do not take into account
some sudden events that could disrupt the behavior of the studied phenomenon. In this work,
we introduce a white noise and jumps in a deterministic SIRS model for smoking to take into
account of the effects of randomly fluctuation and such sudden factors respectively. First of all
we prove that the solution of the stochastic differential equation with jumps of the new model
is positive. Then we study the asymptotic behavior around the smoking-free equilibrium state
and the smoking-present equilibrium state of the original deterministic model. Under certain
conditions, we show that the solution oscillate respectively around these equilibrium states. We
prove that the intensity of these oscillations depends on the magnitude of noise and the jump
diffusion coefficient of our stochastic differential equation with jumps. To support our theoretical
results, we realise numerical simulations. The observations confirm our conclusions.
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1 Introduction

C. Castillo-Garsow et al. established in [1] a model for smoking with three differential equations.
The different unknowns P, S and Qp represented respectively potential smokers (who don’t smoke
now), somkers and former smokers who have permanently quit smoking. This model was improved
by Sharomi and Gumel in [2] by introducing a fourth class consists of people who give up smoking
temporarily (QT ). The total population is assumed to be constant, so P(t), S(t), QT (t) and Qp(t)
are, respectively, at time t, the proportions of the potential smokers, smokers, smokers who have
quit smoking temporarily and smokers who have quit smoking permanently. This gives P (t) +
S(t) +QT (t) +Qp(t) = 1. The nonlinear equation describing the dynamics of smoking is:

dP (t) = [µ− µP (t)− βP (t)S(t)]dt

dS(t) = [−(µ+ γ)S(t) + βP (t)S(t) + αQT (t)]dt

dQT (t) = [−(µ+ α)QT (t) + γ(1− σ)S(t)]dt

dQp(t) = [−µQp(t) + σγS(t)]dt

(1.1)

α, β, µ, γ and σ are real constants on [0;1]. Their meanings are as follows.
µ is the non-smokers recruitment rate in the total population and also the death rate in each
compartment.
β is the contact rate : it is the rate at which potentiel smokers become smokers by contact with
smokers.
α is the rate at which smokers who temporarily quit smoking revert to smoking.
γ is the rate at which smokers left smoking and become smokers who have quit smoking permanently
(Qp) or temporarily (QT ).

σ is the rate of smokers who have left smoking to become smokers who have quit smoking permanently
(Qp). 1−σ is obviously the fraction of smokers who have left smoking to become smokers who have
quit smoking temporarily (QT ).

P (t) + S(t) +QT (t) +Qp(t) = 1. So the study the system (1.1) can be reduced to that of the the
following three-dimensional system (1.2) :

dP (t) = [µ− µP (t)− βP (t)S(t)]dt

dS(t) = [−(µ+ γ)S(t) + βP (t)S(t) + αQT (t)]dt

dQT (t) = [−(µ+ α)QT (t) + γ(1− σ)S(t)]dt

(1.2)

In [2], O. Shoromi et al. calculated Rs the basic reproduction number of the model (1.2).

Rs =
β(µ+ α)

µ(µ+ α) + γ(σα+ µ)
. They call Rs the smokers generation number. It measures the average

number of new smokers generated by a single smoker in a population of potential smokers. The
model described by (1.2), admits two equilibria. When Rs < 1, we obtain the smoking-free
equilibrium state E0 = (1, 0, 0) which is globally asymptotically stable ([2]). When Rs > 1, we
obtain the smoking-present equilibrium state E∗ = (P ∗, S∗, Q∗

T ) where the components P ∗, S∗ and

Q∗
T are calculated as P ∗ =

1

Rs
, S∗ =

µ

β
(Rs − 1), Q∗

T =
γ(1− σ)

µ+ α
S∗.

In [3], when Rs > 1, A. Lahrouz et al. proved that the smoking-present equilibrium state E∗ of the
system (1.2) is globally asymptotically stable in R3

+.

Some small randomly fluctuatations such as a decline in tobacco production, emigration or immigration
may affect the model compartments. In this case the disturbances are modeled by white noise type
which are proportional to P ; S; QT .
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The population may suffer sudden shocks which disrupt the habits. For example ; a very shocking
medias campaigns against smoking by using fear in prevention could make a large group of people
give up smoking. Such campaigns could also lead some people to never smoke.

Pictures and movies related to cancers caused by smoking are very dissuasive. The model described
by the system (1.2) does not consider that circumstance. This is why we need to introduce jumps
in this system to represent this sudden change.

Sudden high taxes on tobacco products are a proven way to reduce tobacco use especially among
youth (see [4]).

Our aim is to study the asymptotic behavior of SIRS model for smoking with jumps symbolizing
sudden changes as above.

In this work, from the model (1.2), we develop a model with jumps perturbation as in [5] :

dP (t) =[µ− µP (t)− βP (t)S(t)]dt+ σ1P (t)dB1(t)

+

∫
Z

C1(z)P (t−)Ñ( dt,dz)

dS(t) =[−(µ+ γ)S(t) + βP (t)S(t) + αQT (t)]dt+ σ2S(t)dB2(t)

+

∫
Z

C2(z)S(t−)Ñ( dt,dz)

dQT (t) =[−(µ+ α)QT (t) + γ(1− σ)S(t)]dt+ σ3QT (t)dB3(t)

+

∫
Z

C3(z)QT (t−)Ñ( dt,dz).

(1.3)

whereBi, i = 1, 2, 3 are independent Brownian motions defined on a stochastic basis (Ω,F , (Ft≥0), P )
and σi, i = 1, 2, 3 are constants.

X(t-) means the left limit of X(t), Ñ(dt, dz) is a Poisson counting measure with the stationary
compensator Π(dz)dt and Π is defined on a measurable subset Z of [0,∞) with Π(Z) < ∞. For
i = 1, 2, 3, Ci > −1.

For practical and realistic reasons, we consider that at the initial state, each compartment of our
model is not empty.
As in similar work done in [6] and [7] our study is organized as follows. In Section 2, we prove that
the equation (1.3) has a unique global and positive solution. In Section 3 et 4, we study respectively
how the jumps influence the behavior around the equilibrium states E0 and E∗. Section 5 presents
some simulation with Matlab software by using numerical methods in [8] and [9].

2 Global Positive Solution

In this section, as in [5] and [10], Lyapunov methods are used to show that the solution of model
(1.3) is positive and global.

For the jump diffusion coefficient we assume that for each m > 0 there exists Lm > 0 such that

• (H1)

∫
Z

|Hi(x, z)−Hi(y, z)|2Π(dz) ≤ Lm|x−y|2, i=1, 2, 3, where H1(x, z) = C1(z)P (x−),

H2(x, z) = C2(z)S(x−), H3(x, z) = C3(z)QT (x−) with |x| ∨ |y| ≤ m

• (H2) | log(1 + Ci(z))| ≤ K1, for Ci(z) > −1, where K1 is positive constant, i = 1, 2, 3.
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Let ∆ = {(x1, x2, x3) ∈ R∗3
+ ; x1 + x2 + x3 < 1}.

As in [10], we show that jump processes can suppress the explosion.

Theorem 2.1. Assume (H1) and (H2) assumptions. Then for any given initial value
(P (0), S(0), QT (0)) ∈ ∆, the equation (1.3) has a unique global solution (P (t), S(t), QT (t)) ∈ ∆ for
all t ≥ 0 almost surely.

Proof. Using (H1) and that the dritft and difusion are locally Lipschitz, we deduce that for any
given initial value (P (0), S(0), QT (0)) ∈ ∆ there is a unique local solution (P, S,QT ) on a random
interval [0, τe[ where τe is the explosion time.

To prove this local solution is global, we need to show that τe = ∞ a.s. We willl also prove
that for any given initial value (P (0), S(0), QT (0)) ∈ ∆, the equation (1.3) has its solution
(P (t), S(t), QT (t)) ∈ ∆ for all t ≥ 0 almost surely.

Let m0 > 0 be sufficiently large so that |P (0)|+|S(0)|+|QT (0)| lie within the interval ]
1

m0
,

m0

m0 + 1
[.

We also have P (0), S(0) and QT (0) in the interval ]
1

m0
,m0[. For each integer m ≥ m0, define a

new stopping time

τ
′
m = inf{t ∈ [0,+∞[: |P (t)|+ |S(t)|+ |QT (t)| /∈]

1

m
,

m

m+ 1
[}.

Clearly, τ
′
m is increasing as m ↑ ∞ a.s. Set τ

′
∞ = lim

m→∞
τ

′
m. If we can show that τ

′
∞ = ∞ a.s is true,

then |P (t)|+ |S(t)|+ |QT (t)| < 1 a.s.

For each integer m ≥ m0, define the stopping time

τm = inf{t ∈ [0, τe ∧ τ
′
∞[: P (t) /∈] 1

m
,m[ or S(t) /∈] 1

m
,m[ or QT (t) /∈] 1

m
,m[}.

Clearly, τm is increasing as m ↑ ∞ a.s. Set τ∞ = lim
m→∞

τm, whence, τ∞ ≤ τe and τ∞ ≤ τ
′
∞ a.s. If

we can show that τ∞ = ∞ a.s is true, then τe = ∞ and τ
′
∞ = ∞ a.s and (P (t), S(t), QT (t)) ∈ ∆

a.s.

To prove that, we consider a C2-function defined on ]0;+∞[3 as following by
F : (x, y, z) 7→ (x− 1− log x) + (y − 1− log y) + (z − 1− log z).

Let m ≥ m0 and T > 0 be arbitrary. For t ∈ [0; τm ∧ T [, F (P (t), S(t), QT (t)) = (P (t) − 1 −
logP (t)) + (S(t)− 1− logS(t)) + (QT (t)− 1− logQT (t)) is well defined.

Applying Itô´ s formula, we obtain

dF (P (t), S(t), QT (t)) = LF (P (t), S(t), QT (t))dt

+ σ1(P (t)− 1)dB1(t)

+ σ2(S(t)− 1)dB2(t)

+ σ3(QT (t)− 1))dB3(t)

+

∫
Z

[C1(z)P (t−)− log(1 + C1(z))

+ C2(z)S(t−)− log(1 + C2(z))

+ C3(z)QT (t−)− log(1 + C3(z))]Ñ( dt,dz)
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where

LF (P (t), S(t), QT (t)) = [4µ+ α+ γ + βP (t) + βS(t) + γ(1− σ)S(t)

+
1

2
σ2
1 +

1

2
σ2
2 +

1

2
σ2
3 ]

− [µP (t) + (µ+ γ)S(t) + µQT (t) +
µ

P (t)

+ α
QT (t)

S(t)
+ γ(1− σ)

S(t)

QT (t)
]

+

∫
Z

[C1(z)− log(1 + C1(z))

+ C2(z)− log(1 + C2(z))

+ C3(z)− log(1 + C3(z))] dΠ(z).

For t ∈ [0; τm ∧ T [, P (t), S(t), QT (t), α, β, γ, σ and µ live in [0;1]. So we get

4µ+ α+ γ + βP (t) + βS(t) + γ(1− σ)S(t) +
1

2
σ2
1 +

1

2
σ2
2 +

1

2
σ2
3

≤ 4µ+ α+ γ + 2β + γ(1− σ) +
1

2
(σ2

1 + σ2
2 + σ2

3) = K2

and

LF (P (t), S(t), QT (t)) ≤ K2 + 3K3 = K

with

K3 = max{
∫
Z

[C1(z)− log(1 + C1(z))] dΠ(z) ,∫
Z

[C2(z)− log(1 + C2(z))] dΠ(z) ,∫
Z

[C3(z)− log(1 + C3(z))] dΠ(z)}.

Therefore,

∫ τm∧T

0

dF (P (t), S(t), QT (t)) ≤
∫ τm∧T

0

K dt

+

∫ τm∧T

0

σ1(P (t)− 1)(P (t)− P ∗)dB1(t)

+

∫ τm∧T

0

σ2(S(t)− 1)(S(t)− S∗)dB2(t)

+

∫ τm∧T

0

σ3(QT (t)− 1)(QT (t)−Q∗
T )dB3(t)

+

∫ τm∧T

0

∫
Z

[C1(z)P (t−)− log(1 + C1(z))

+ C2(z)S(t−)− log(1 + C2(z))

+ C3(z)QT (t−)− log(1 + C3(z))]Ñ( dt, dz).
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Taking expectation, yields

E(F (P (τm ∧ T ), S(τm ∧ T ), QT (τm ∧ T ))) ≤ F (P (0), S(0), QT (0)) +KT = K′ (2.1)

Define for each u > 1,

µ(u) = inf

{
F (x) : x = (x1, x2, x3) ∈]0;+∞[3 and xi ≥ u or xi ≤

1

u
for some i = 1, 2, 3

}
. Due to

the property of the function h(x) := x − 1 − lnx, x > 0, we see that lim
x→+∞

h(x) = +∞ and

lim
x→0
x>0

h(x) = +∞

and hence
lim

u→+∞
µ(u) = +∞.

We know that if X is a Levy process then, for each t ≥ 0 we have ∆X(t) = 0 almost surely where
∆X(t) = X(t)−X(t−).

P , S, QT are Levy processes. So we obtain almost surely from (2.1) :

µ(m)P(τm ≤ T ) ≤ E(F (P (τm ∧ T ), S(τm ∧ T ), QT (τm ∧ T ))I{τm≤T})

≤ E(F (P (τm ∧ T ), S(τm ∧ T ), QT (τm ∧ T )))

≤ K′.

We deduce

P(τm ≤ T ) ≤ K′

µ(m)
.

Letting m −→ +∞ yields

P(τ∞ ≤ T ) = 0.

Since T is arbitrary, we must have

P(τ∞ = +∞) = 1 a.s.

So τe = +∞ a.s. and the equation (1.3) has a unique global positive solution X(t) in ∆ for
t ≥ 0.

3 Asymptotic Behavior around the Smoking-free
Equilibrium State of the Deterministic Model

Considering the system (1.2), if Rs =
β(µ+ α)

µ(µ+ α) + γ(σα+ µ)
< 1, the solution E0 = (1, 0, 0)

is globally asymptotically stable. For now, we are not be able to explain the solution of the
system (1.3). So when Rs < 1, we will study the asymptotic behavior of our stochastic model with
jumps around E0.

Theorem 3.1. Let (P (t), S(t), QT (t)), be the solution of the system (1.3) with initial value

(P (0), S(0), QT (0)) ∈ ∆. If Rs =
β(µ+ α)

µ(µ+ α) + γ(σα+ µ)
< 1 and β < µ + γ , then there exists

K > 0 such that

6
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lim sup
t→∞

1
t
E

∫ t

0

[(P (τ)− 1)2 + S2(τ) +QT (τ)] dτ ≤
σ2
1 + σ2

2 +

∫
Z

(C2
1 (z) + C2

2 (z))|Π(dz)

K′

where

K′ = min{µ ;
K

2
[[µ(µ+ α) + γ(µ+ σα)](1−Rs)−

2α

K
]}.

Proof. First, change the variables x = P − 1, y = S, w = QT , then system (1.3) can be written as



dx(t) =[µ− µ(x(t) + 1)− β(x(t) + 1)y(t)]dt+ σ1(x(t) + 1)dB1(t)

+

∫
Z

C1(z)(x(t−) + 1)Ñ( dt, dz)

dy(t) =[−(µ+ γ)y(t) + β(x(t) + 1)y(t) + αw(t)]dt+ σ2y(t)dB2(t)

+

∫
Z

C2(z)y(t−)Ñ( dt, dz)

dw(t) =[−(µ+ α)w(t) + γ(1− σ)y(t)]dt+ σ3w(t)dB3(t)

+

∫
Z

C3(z)w(t−)Ñ( dt,dz).

(3.1)

We deduce that −1 ≤ x ≤ 0 , 0 ≤ y ≤ 1 and 0 ≤ w ≤ 1.

Define a C2-function by

F (x, y, w) = (x+ y)2 + e1y + e2w

where e1 and e2 are positive constants to be determined later. Then the function F is positive
definite, and

dF (x(t), y(t), w(t)) =LFdt

+ 2σ1(x(t) + y(t))(x(t) + 1)dB1(t)

+ σ2[2(x(t) + y(t)) + e1]y(t)dB2(t) + σ3e2w(t)dB3(t)

+

∫
Z

{[(C1(z) + 1)2 − 1]x2(t−) + [(C2(z) + 1)2 − 1]y2(t−)

+ 2[(C1(z) + 1)(C2(z) + 1)− 1]x(t−)y(t−) + 2C1(z)C2(z)x(t−)

+ [2C1(z)(C2(z) + 1) + e1C2(z)]y(t−)

+ e2C3(z)w(t−)}Ñ( dt,dz)

(3.2)

where

LF = −2µx2 + (−4µ− 2γ + βe1)xy + [−(µ+ γ − β)e1 + γ(1− σ)e2]y + 2αxw

+ [2αy + αe1 − (µ+ α)e2]w − 2(µ+ γ)y2 + [σ1(x+ 1) + σ2y]
2

+

∫
Z

[(x+ 1)C1(z) + yC2(z)]
2Π(dz).

Using −1 ≤ x ≤ 0 , 0 ≤ y ≤ 1 , 0 ≤ w ≤ 1 , the fact α , β , γ , σ, µ are positves in ]0; 1[

7
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(implying that 2αxw ≤ 0) and the inequality (a+ b)2 ≤ 2(a2 + b2), we get

LF ≤ −2µx2 + (−4µ− 2γ + βe1)xy + [−(µ+ γ − β)e1 + γ(1− σ)e2]y

+ [2α+ αe1 − (µ+ α)e2]w − 2(µ+ γ)y2 + 2(σ2
1 + σ2

2)

+ 2

∫
Z

(C2
1 (z) + C2

2 (z))Π( dz).

We assume that β < µ+ γ so that µ+ γ − β > 0.

We choose e1 = Kγ(1− σ) and e2 = K(µ+ γ − β) with K > 0 as

Kβγ(1− σ) > 4µ+ 2γ and
2α

K
< [µ(µ+ α) + γ(σα+ µ)](1−Rs).

In these cases the following is deduced :

−4µ− 2γ + βe1)xy ≤ 0 , −(µ+ γ − β)e1 + γ(1− σ)e2 = 0 and

2α+ αe1 − (µ+ α)e2

= 2α+ αKγ(1− σ)− (µ+ α)K(µ+ γ − β)

= K[
2α

K
++αγ(1− σ)− (µ+ γ − β)(µ+ α)]

= K[
2α

K
+ β(µ+ α)− µ(µ+ α)− γ(µ+ α) + αγ − αγσ]

= K[
2α

K
+ β(µ+ α)− [µ(µ+ α) + γ(µ+ σα)]]

= K[
2α

K
+ [µ(µ+ α) + γ(µ+ σα)](

β(µ+ α)

µ(µ+ α) + γ(µ+ σα)
− 1)]

= K[
2α

K
+ [µ(µ+ α) + γ(µ+ σα)](Rs − 1)] < 0.

Finally we get

LF ≤ −2µx2 − 2(µ+ γ)y2 −K[[µ(µ+ α) + γ(µ+ σα)](1−Rs)−
2α

K
]w

+ 2(σ2
1 + σ2

2) + 2

∫
Z

(C2
1 (z) + C2

2 (z))Π( dz).
(3.3)

Integrating both sides of (3.2) from 0 to t, then taking expectation, yields

0 ≤ EF (x(t), y(t), w(t)) = F (x(0), y(0), w(0)) + E

∫ t

0

LF (x(τ) + y(τ) + w(τ)] dτ

By (3.3) we have

E[
∫ t

0

{2µx2(τ) + 2(µ+ γ)y2(τ) +K[[µ(µ+ α) + γ(µ+ σα)](1−Rs)−
2α

K
]w2(τ)} dτ ]

≤ F (x(0), y(0), w(0)) + 2[σ2
1 + 2σ2

2

∫
Z

(C2
1 (z) + C2

2 (z))Π( dz].

Therefore

lim sup
t→∞

1
t
E

∫ t

0

[(P (τ)− 1)2 + S2(τ) +QT (τ)] dτ ≤
σ2
1 + σ2

2 +

∫
Z

(C2
1 (z) + C2

2 (z))|Π(dz)

K′

8



Coulibaly and N’Zi; JAMCS, 34(3): 1-16, 2019; Article no.JAMCS.52085

where

K′ = min{µ ; µ+ γ ;
K

2
[[µ(µ+ α) + γ(µ+ σα)](1− Rs)−

2α

K
]} = min{µ ;

K

2
[[µ(µ+ α) + γ(µ+

σα)](1−Rs)−
2α

K
]}

Remark 3.1. We have just proved that, when Rs < 1, with a condition on some constants of the
system, the solution of (1.2) oscillates more closely around the smoking-free equilibrium state as
the intensity of the noise and the jumps decreases.

4 Asymptotic Behavior around the Smoking-present
Equilibrium State of the Deterministic Model

We are not able to explain the solution of the sytem system (1.3). So, in the case where Rs > 1,
we want to know if the solution system (1.3) can oscillate around the smoking-present equilibrium
of the model (1.2).

Theorem 4.1. Let (P (t), S(t), QT (t)), be the solution of the system (1.3) with initial value

(P (0), S(0), QT (0)) ∈ ∆. If Rs =
β(µ+ α)

µ(µ+ α) + γ(σα+ µ)
> 1 and the condition β < µ + γ +

µ(µ+ γσ)(Rs − 1)

2µ+ γσ
is satisfied,

then

lim sup
t→∞

1

t
E

∫ t

0

[(P (τ) +QT (τ)− P ∗ −Q∗
T )

2 + (S(τ)− S∗)2 + (QT (τ)−Q∗
T )

2] dτ ≤ M

µ

where

M =
1

2
[3(σ2

1 +σ2
2 +σ2

3)+mσ2
2 + vσ2

3 ]+

∫
Z

{m|C2(z)|+ v|C3(z)|+
3

2
C2

1 (z)+2C2
2 (z)+2C2

3 (z)}Π(dz)

with m =
2µ+ γσ

µ(Rs − 1)
and v =

2µ+ γσ

γ(1− σ)
.

Proof. Define F : (x, y, z) 7→ F1(x, y, z) + F2(x, y, z),

where F1 : (x, y, z) 7→ 1

2
(x− P ∗ + y − S∗ + z −Q∗

T )
2, F2 : (x, y, z) 7→ 1

2
m(y − S∗)2 +

1

2
v(z −Q∗

T )
2,

where m and v are positive constants to be determined later.

F is positive definite.

By using of Itô´ s formula, we obtain

dF1(P (t), S(t), QT (t)) =LF1(t)dt+ (P (t)− P ∗ + S(t)− S∗ +QT (t)−Q∗
T )×

[σ1P (t)dB1(t) + σ2S(t)dB2(t) + σ3QT (t)dB3(t)]

+

∫
Z

{[P (t)− P ∗ + S(t)− S∗ +QT (t)−Q∗
T ]

× [C1(z)P (t−) + C2(z)S(t−) + C3(z)QT (t−)]

+
1

2
[C1(z)P (t−) + C2(z)S(t−) + C3(z)QT (t−)]2}Ñ( dt, dz)

9



Coulibaly and N’Zi; JAMCS, 34(3): 1-16, 2019; Article no.JAMCS.52085

with

LF1(t) =− (P (t)− P ∗ + S(t)− S∗ +QT (t)−Q∗
T )

× [µ(P (t)− P ∗) + µ(QT (t)−Q∗
T ) + (µ+ γσ)(S(t)− S∗)]

+
1

2
[σ1P (t) + σ2S(t) + σ3QT (t)]

2

+
1

2

∫
Z

[C1(z)P (t−) + C2(z)S(t−) + C3(z)QT (t−)]2Π(dz)

By using µ = µP ∗+βP ∗S∗ , −(µ+γ)S∗+βP ∗S∗+αQ∗
T = 0 and −(µ+α)Q∗

T +γ(1−σ)S∗ = 0 (these
egalities from the fact that (P ∗, S∗, Q∗

T ) is the smoking-present equilibrium of the model (1.2)), we
obtain

LF1(t) =− µ(P (t) +QT (t)− P ∗ −Q∗
T )

2 − (µ+ γσ)(S(t)− S∗)2

− (2µ+ γσ)(P (t)− P ∗)(S(t)− S∗)− (2µ+ γσ)(QT (t)−Q∗
T )(S(t)− S∗)

+
1

2
[σ1P (t) + σ2S(t) + σ3QT (t)]

2

+
1

2

∫
Z

[C1(z)P (t−) + C2(z)S(t−) + C3(z)QT (t−)]2Π(dz)

In view of the elementary inegality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) and since P , S , QT live in [0;1],
we get

LF1(t) ≤− µ(P (t) +QT (t)− P ∗ −Q∗
T )

2 − (µ+ γσ)(S(t)− S∗)2

− (2µ+ γσ)(P (t)− P ∗)(S(t)− S∗)− (2µ+ γσ)(QT (t)−Q∗
T )(S(t)− S∗)

+
3

2
(σ2

1 + σ2
2 + σ2

3)

+
3

2

∫
Z

[C2
1 (z) + C2

2 (z) + C2
3 (z)]Π( dz).

(4.1)

We also have

dF2(P (t), S(t), QT (t))) =LF2(t)dt+ σ2mS(t)(S(t)− S∗)dB2(t)

+ σ3vQT (t)(QT (t)−Q∗
T )dB3(t)

+

∫
Z

{1
2
m(S(t−)− S∗ + C2(z)S(t−))2

+
1

2
v(QT (t−)−Q∗

T + C3(z)QT (t−))2

− 1

2
m(S − S∗)− 1

2
v(QT −Q∗

T )}Ñ( dt,dz).

with

LF2(t) =m(S(t)− S∗)

× [−(µ+ γ)(S(t)− S∗) + β(P (t)S(t)− P ∗S∗) + α(QT (t)−Q∗
T )]

+ v(QT (t)−Q∗
T )[−(µ+ α)(QT (t)−Q∗

T ) + γ(1− σ)(S(t)− S∗)]

+
1

2
[mσ2

2S
2(t)(S(t)− S∗) + vσ2

3Q
2
T (t)(QT (t)−Q∗

T )]

+

∫
Z

{m[C2(z)S(t−))(S(t−)− S∗) +
1

2
C2

2 (z)S
2(t−))]

+ v[C3(z)QT (t−)(QT (t−)−Q∗
T ) +

1

2
C2

3 (z)Q
2
T (t−)]}Π(dz).

10
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Since PS − P ∗S∗ = S∗(P − P ∗) + P (S − S∗) we have,

LF2(t) =− (µ+ γ)m(S(t)− S∗)2 − (µ+ α)v(QT (t)−Q∗
T )

2

+mβ(S(t)− S∗)[S∗(P (t)− P ∗) + P (t)(S(t)− S∗)]

+ γ(1− σ)v(S(t)− S∗)(QT (t)−Q∗
T )

+
1

2
[mσ2

2S
2(t)(S(t)− S∗) + vσ2

3Q
2
T (t)(QT (t)−Q∗

T )]

+

∫
Z

{m[C2(z)S(t−))(S(t−)− S∗) +
1

2
C2

2 (z)S
2(t−))]

+ v[C3(z)QT (t−)(QT (t−)−Q∗
T ) +

1

2
C2

3 (z)Q
2
T (t−)]}Π(dz)

=− (µ+ γ − βP (t))m(S(t)− S∗)2 − (µ+ α)v(QT (t)−Q∗
T )

2

+mβS∗(S(t)− S∗)(P (t)− P ∗) + γ(1− σ)v(S(t)− S∗)(QT (t)−Q∗
T )

+
1

2
[mσ2

2S
2(t)(S(t)− S∗) + vσ2

3Q
2
T (t)(QT (t)−Q∗

T )]

+

∫
Z

{m[C2(z)S(t−))(S(t−)− S∗) +
1

2
C2

2 (z)S
2(t−))]

+ v[C3(z)QT (t−)(QT (t−)−Q∗
T ) +

1

2
C2

3 (z)Q
2
T (t−)]}Π(dz).

Since P , S , QT , P ∗ , S∗ , Q∗
T ,P − P ∗ , S − S∗ , QT −Q∗

T live in [-1;1] we get

LF2(t) ≤− (µ+ γ − β)m(S(t)− S∗)2 − (µ+ α)v(QT (t)−Q∗
T )

2

+mβS∗(S(t)− S∗)(P (t)− P ∗) + γ(1− σ)v(S(t)− S∗)(QT (t)−Q∗
T )

+
1

2
(mσ2

2 + vσ2
3)

+

∫
Z

{m[C2(z)S(t−))(S(t−)− S∗) +
1

2
C2

2 (z)]

+ v[C3(z)QT (t−)(QT (t−)−Q∗
T ) +

1

2
C2

3 (z)]}Π(dz).

(4.2)

By using (4.1) and (4.2), we get

LF (t) ≤− µ(P (t) +QT (t)− P ∗ −Q∗
T )

2

− [µ+ γσ +m(µ+ γ − β)](S(t)− S∗)2 − (µ+ α)v(QT (t)−Q∗
T )

2

+ [mβS∗ − (2µ+ γσ)](S(t)− S∗)(P (t)− P ∗)

+ [γ(1− σ)v − (2µ+ γσ)](S(t)− S∗)(QT (t)−Q∗
T )

+
1

2
[3(σ2

1 + σ2
2 + σ2

3) +mσ2
2 + vσ2

3 ]

+

∫
Z

{m|C2(z)|+ v|C3(z)|+
3

2
C2

1 (z) + 2C2
2 (z) + 2C2

3 (z)}Π(dz).

Now we choose m =
2µ+ γσ

µ(Rs − 1)
and v =

2µ+ γσ

γ(1− σ)
such that mβS∗− (2µ+γσ) = 0 and γ(1−σ)v−

(2µ + γσ) = 0. We also assume β < µ + γ +
µ+ γσ

m
i.e β < µ + γ +

µ(µ+ γσ)(Rs − 1)

2µ+ γσ
so that

µ+ γσ +m(µ+ γ − β) > 0.
Finally, we get

LF (t) ≤− µ(P (t) +QT (t)− P ∗ −Q∗
T )

2

− [µ+ γσ +m(µ+ γ − β)](S(t)− S∗)2 − (µ+ α)v(QT (t)−Q∗
T )

2 +M
(4.3)

11
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where M =
1

2
[3(σ2

1 + σ2
2 + σ2

3) + mσ2
2 + vσ2

3 ] +

∫
Z

{m|C2(z)| + v|C3(z)| +
3

2
C2

1 (z) + 2C2
2 (z) +

2C2
3 (z)}Π(dz).

Therefore integrating both sides of dF = dF1 + dF2 from 0 to t, then taking expectations, yields

0 ≤ EF (X(t)) = F (X(0)) + E

∫ t

0

LF (X(τ)) dτ.

Considering inequality (4.3) and letting t → ∞ we have

lim sup
t→∞

1

t
E

∫ t

0

[(P (τ) +QT (τ)− P ∗ −Q∗
T )

2 + (S(τ)− S∗)2 + (QT (τ)−Q∗
T )

2] dτ ≤ M

µ
because µ = min{µ , µ+ γσ +m(µ+ γ − β) , (µ+ α)v}.

Remark 4.1. With certain conditions, we obtain that the solution of model (1.3) fluctuates more
and more closely around the smoking-present equilibrium state of the deterministic model.

5 Numerical Simulations

Using Matlab software, we illustrate now some sample paths of solution of the model (1.3) for
different values of the parameters. We observe that these paths are in agreement with theorical
behavior.

We consider that the interference of Poisson jumps is negative for all compartments. This is
motivated by conclusions of WHO (World Health Organization) report on the global tobacco
epidemic in 2015 (see [4]).

On the other hand, as in Theorem 3.1 and Theorem 4.1, small intensities of jumps and white noise
are conditions of oscillation of the solution around a equilibrium state. We want to observe it in
the simulations. So these results motivated the choice of our jumps and noise coefficients in the
simulations. We thus obtain simulations that do not involve large jumps. Indeed, in our model we
integrate according to the random measure of compensated Poisson which corresponds to the sum
of small jumps.

5.1 Oscillations around the Smoking-free Equilibrium State

For the first simulation, as in [5] and [9], we define Ci(z) = ki
z2

1 + z2
, z ∈ [−1, 1], i = 1, 2, 3 with

k1 = −0.01, k2 = −0.002, k3 = −0.0025 such that assumptions (H1) and (H2) of Section 2 are
verified. We chose σ1 = 0.04 , σ2 = 0.03 , σ3 = 0.02. We obtain the Figure 1.

For the second simulation, we use the following parameters: µ = 0.01, γ = 0.3, α = 0.25, and
σ = 0.4, with β = 0.1. So Rs = 0.73034 and β < µ + γ. Conditions in theorem 3.1 are satisfied.
We get the Figure 2.

12
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P(t)
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Fig. 1. Trajectory of the solution of the system (1.3) for
P (0) = 0.85955, S(0) = 0.111744, QT (0) = 0.025165, , Rs < 1 and β < µ+ γ.
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Fig. 2. Trajectory of the solution of the system (1.3) for
P (0) = 0.65000, S(0) = 0.26800, QT (0) = 0.04400, Rs < 1 and β < µ+ γ.

5.2 Oscillations around the smoking-present equilibrium state

In this subsection, we reduce the parameter M =
1

2
[3(σ2

1 +σ2
2 +σ2

3)+mσ2
2 + vσ2

3 ] +

∫
Z

{m|C2(z)|+

v|C3(z)|+
3

2
C2

1 (z) + 2C2
2 (z) + 2C2

3 (z)}Π(dz) with m =
2µ+ γσ

µ(Rs − 1)
and v =

2µ+ γσ

γ(1− σ)
.

For that we choose µ = 0.01, σ1 = 0.02, σ2 = 0.005, σ3 = 0.0055, k1 = −0.01, k2 = −0.002,
k3 = −0.0025,

For the following simulation, we choose α = 0.25, γ = 0.3, σ = 0.4 and the contact rate between

potential smokers and smokers β = 0.3. So Rs > 1 and β < µ+γ+
µ(µ+ γσ)(Rs − 1)

2µ+ γσ
. Conditions

of the theorem 4.1 are satisfied. We obtain the Figure 3. This figure shows the asymptotic behavior

13
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of the solution of the system (1.3). With our previous assumptions, this solution that oscillates
around the smoking-free equilibrium state (P ∗;S∗;Q∗

T ).

Next, we give an other numerical simulation to explain Theorem 4.1 by changing somme previous
parameters. We take now : α = 0.35, γ = 0.3, σ = 0.2 and β = 0.3. We obtain a greater value of

Rs : Rs = 3.913. The condition β < µ + γ +
µ(µ+ γσ)(Rs − 1)

2µ+ γσ
is also verified. In this case, to

better observe the asymptotic behavior of our model around the smoking-present equilibrium state
of the deterministic model, we are forced to simulate the model on a larger time interval with more
small jump diffusion coefficient. So we take the interval [0 ; 1000]. The figure Figure 4 correspond
to these new hypotheses and support also our theory.

0 50 100 150 200 250 300 350 400 450 500
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0.1

0.2

0.3
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0.5

0.6

0.7

 time T

Rs =2.191,  β=0.3,  P*=0.45641,  S*=0.0397,  QT
* =0.027485

P(t)
S(t)
QT(t)

Fig. 3. Trajectory of the solution of the system (1.3) for Rs > 1 ,

β < µ+ γ +
µ(µ+ γσ)(Rs − 1)

2µ+ γσ
, P (0) = 0.60000, S(0) = 0.20628 and QT (0) = 0.10000.
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Rs =3.913,  β=0.3,  P*=0.25556,  S*=0.097101,  QT
* =0.064734
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S(t)
QT(t)

Fig. 4. Trajectory of the solution of the system (1.3) for Rs > 1 ,

β < µ+ γ +
µ(µ+ γσ)(Rs − 1)

2µ+ γσ
, P (0) = 0.80301, S(0) = 0.10628, and QT (0) = 0.08260.
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6 Conclusion and Perspective

In this study, we modeled the state of smoking by a more realistic mathematical compartmental
model. To do this, we have to improve a deterministic model that has a continuous structure. This
continuity is not possible in the reality. In fact, the different compartments of the model represent
classes of the population that are subject to non-continuous phenomena. We added to it some
white noises that could symbolize small fluctuations due to population movements (immigration,
emigration). The added jumps could model sudden phenomena like changes of attitudes due to a
media campaign.
We have shown that by controlling some parameters of our model (the basic reproduction number
and some constants of our system), we could approach a situation without smoking. In this case, the
solution of our sytem oscillate more and more closely around the the smoking-free equilibrium state.
Otherwise, smoking could be maintained at another appreciable stationary state by controlling
certain constants. It is the situation where the solution of our sytem oscillate more and more
closely around the the smoking-present equilibrium state.

The control of the constants of our sytem could be done by the aplication of some laws instituted
by the public authorities. For example, a prohibition to smoke in a public area could lead to a
reduction of the contact rate.
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