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Abstract: A novel methodology is presented for performing sensitivity analyses of assembled plate
structures using the Boundary Element Method (BEM). The main novelty of this work is that the exact
implicit derivatives of the BEM formulations for assembled plate structures have been derived for the
first time and incorporated into a newly developed Implicit Differentiation Method (IDM), enabling
sensitivity analyses to be conducted for more complex and realistic structures in a more accurate,
robust, and efficient manner than previous approaches. Three numerical examples are investigated
to validate the derived exact implicit derivatives and to demonstrate how they could be used for a
potential application involving the shape optimisation of a complex X-core structure from the canard
of a Eurofighter Typhoon fighter jet. Results show that the newly developed IDM is more accurate,
robust, and efficient when compared to alternative methodologies using derivatives obtained from
methods such as the Finite Difference Method (FDM) and the Finite Element Method (FEM).
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Sensitivity analysis plays a key role in the design of structures. It is very important
for engineers to understand the sensitivity of a structure’s performance to changes in
geometrical, material, or loading parameters. Sensitivity analysis also enables engineers to
Academic Editor: Yui-Chuin Shiah optimise the design of their structures and maximise their safety.

The Boundary Element Method (BEM) is a very useful tool for conducting sensitivity
analyses of structures. When modelling a structure, the BEM only requires the outer
boundary of the structure to be discretised into elements. This makes the BEM a very
efficient tool for sensitivity analyses, because only a relatively small part of the model
needs to be re-meshed during the analyses. Furthermore, the BEM can often achieve a
similar level accuracy to the Finite Element Method (FEM) while using a courser mesh with
fewer elements, indicating that the BEM would be a very efficient method for optimisation
problems involving the calculation of many sensitivities over many iterations [1].

Most prior work on structural sensitivity analysis with the BEM amongst the research
community has involved 2D structures [2-11], and 3D structures [12-17] to a smaller
degree. There have only been a few prior research works on the topic of structural sen-
sitivity analysis with the BEM that have involved plate structures, with some examples
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distributed under the terms and  able to be modelled accurately in 2D. Furthermore, although modelling a structure in 3D
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on the other hand, have a much greater range of application and enable more complex
plate structures to be investigated. However, there are several challenges associated with
the sensitivity analysis of assembled structures—there are significantly more geometric
parameters involved compared to single-plate structures and the interaction between these
parameters is more complex, increasing the computation time and complexity. The BEM,
due to its inherent advantages described earlier, would be very effective at addressing
these challenges. Therefore, this current work aims to build upon previous work by the
research community and develop a novel methodology for conducting sensitivity analyses
for assembled-plate structures—enabling complex plate structures to be investigated both
accurately and efficiently.

A common approach to calculating sensitivities is with the Finite Difference Method
(FDM). The FDM is a relatively simple method that uses finite differences to calculate
sensitivities. Although simple to implement, a drawback of the FDM is that its accuracy is
highly dependent on the step-size used. An alternative approach to the FDM would be to
derive the exact implicit derivatives of the BEM formulations. This Implicit Differentiation
Method (IDM), since it uses the exact derivatives, would be more accurate and robust
than the FDM. In addition, by exploiting the inherent advantages of the BEM mentioned
earlier, it would also be more computationally efficient, since large parts of the BEM mesh
would remain unchanged during the sensitivity analyses. Previous examples of work by
the research community involving the derivation of the exact implicit derivatives of BEM
formulations include [2,20-22] for 2D structures, [23] for 3D structures, and [18,19] for
simple single-plate structures. There have not yet been any works involving assembled-
plate structures.

In summary, the main novelty of this current work is that the exact implicit derivatives
of the BEM assembled-plate structure formulations have been derived for the first time.
Previous works have only derived these derivatives for simple single-plate structures. By
deriving the derivatives for assembled plate structures, a wider range of more realistic
and complex structures can be investigated. The use of these derivatives, along with
the inherent advantages of the BEM, can significantly improve the accuracy, robustness,
and computational efficiency when performing structural sensitivity analyses of these
more realistic and complex structures. Potential applications of this newly developed
methodology include the shape optimisation or structural reliability analysis of complex
plate structures.

The formulations behind the BEM for assembled plate structures, as well as the exact
implicit derivatives of these formulations, are presented in Section 2. Several numerical
examples are presented in Section 3 to validate the derived exact implicit derivatives and to
demonstrate their accuracy, robustness, and efficiency. A numerical example involving the
shape optimisation of a complex assembled plate structure is also presented to demonstrate
a potential application of the derived exact implicit derivatives.

2. Methodology

In this section, the formulations of the Boundary Element Method (BEM) and the
Implicit Differentiation Method (IDM) for assembled plate structures are presented. In this
work, Latin letter indexes (e.g., i, j, k) can take values from 1 to 3, whereas Greek letter
indexes (e.g., «, B, p, 7v) can take values of either 1 or 2.

2.1. Plate Theory Notation in the Boundary Element Method

Figure 1 shows a plate of thickness i (—h/2 < x3 < +h/2). The membrane of the
plate is the x; — x» plane.
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Figure 1. Plate geometry. Reprinted with permission from Ref. [1], 2002, Ferri M.H. Aliabadi.

The sign convections for the displacements, rotations, tractions, and moments for
plates is shown in Figure 2.

Figure 2. Sign convections for the displacements, rotations, tractions, and moments.
The in-plane displacements of the plate are given in Equation (1):

_[m
ws il 8

The rotations and out-of-plane displacement of the plate are given in Equation (2):

w1
W = | Wy (2)
LW3

where w; and w; are rotations, and wj3 is the out-of-plane displacement of the plate in
direction x3.
The membrane tractions are given in Equation (3):

t— {tl] _ {N11711+N12n2}

3
t Noinq + Nypno @)



Aerospace 2022, 9, 381

4 of 24

Ne
Chw + Z

where N, are the membrane stress resultants, and ng are the components of the outward
normal vector of the boundary of the plate.
The bending and shear tractions are given in Equation (4):

P1
Mjiny + Nypn
=] [N =[N p—omiom @
Ps3

where M, p are the bending stress resultants, and Q, are the shear stress resultants.

2.2. The Boundary Element Method for Plate Structures

In the approach developed by Dirgantara and Aliabadi [24], the Boundary Element
Method (BEM) for plate structures involves using the Reissner theory to model the bend-
ing and shear behaviour of plates, whereas 2D plane stress theory is used to model the
behaviour of the membrane of plates. The BEM equation for the plate membrane is given
in Equation (5):

N, N,
C'u+ Y (/r Tmtp;rdl"m,)u”ﬂ =) (/r Umlp}drm)t”e (5)

ne=1 ne=1

The BEM equation for bending and shear is given in Equation (6):

N, N,
( / Tbtpgdrn€>w”9 =Y ( UhtperFnB>p”f+q3 ) < / Bbdl"ne> (6)
rﬂg ”e:l rng nezl rng

N, denotes the number of elements on the external boundary. T", T?, U™, UY, and B?
are fundamental solutions evaluated along the surface of element ., I';,. 43 is a uniform
load applied over the surface of the plate. The terms C" and C' are free terms and their
values can be directly evaluated from a consideration of rigid body motion [1]. Quadratic
boundary elements, consisting of three nodes and ten Gaussian quadrature integration
points, were used in this work. ] contains the continuous shape functions for the quadratic
boundary elements. More information on the numerical integration approach used in this
work can be found in [1]. Detailed forms of the above equations can be found in [1,19,22,24].

u is a (2 x 1) vector that contains the in-plane displacements for element 7, and is
shown in Equation (7):

o = [ 1} @)

w' isa (3 x 1) vector that contains rotations w; and w, and vertical displacement w3
for element 7, and is shown in Equation (8):

w' = |whe 8)

t" is a (2 x 1) vector that contains the tractions due to membrane stress resultants for
element 7, and is shown in Equation (9):

Ne
= H ©)
2

p"™ is a (3 x 1) vector that contains bending tractions p; and p;, and shear traction p3
for element 7, and is shown in Equation (10):
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P1
P = |y (10)
p3’
By using the above equations, the system of equations shown in Equation (11) can be
created:
Hu = Gt (11)

where u contains displacements and rotations, and t contains membrane, bending, and
shear tractions. G and H are matrices of coefficients. This system can be rewritten as shown
in Equation (12):

AX=F (12)

where X contains all of the unknown displacements, rotations, and tractions. A is a matrix
that contains the coefficients from H and G. F contains the known displacements, rotations,
and tractions multiplied by the corresponding coefficients from H and G. Details of this
procedure are shown in [22].

2.3. The Boundary Element Method for Assembled Plate Structures

The above procedure is straightforward for a structure consisting of a single plate.
However, the range of application for a structure consisting of a single plate is very limited.
To widen the range of application of the above procedure, it must be extended to structures
consisting of multiple plates joined together. This would significantly expand the range of
application of the above procedure and enable more complex structures, including many
structures found in aircraft, to be investigated in an accurate, robust, and computationally
efficient manner.

An example of an assembled plate structure consisting of two plates is shown in
Figure 3. Each plate has its own local coordinate system, which is used when calculating
the matrix A of each plate. The plates are connected along a junction line.

Junction line

Figure 3. An assembled plate structure consisting of two plates joined together along a junction line.
Each plate has its own local coordinate system (xi,xé,xé). The edges of each plate are labelled 1-4.

The A matrix of the assembled plate structure in Figure 3 is shown in Figure 4. The
parts of the A matrices corresponding to the edges 1-4 are shown. To account for the
connection between the two plates at the junction line, additional columns are added to the
A matrix of each plate, and are labelled as ‘J’. The number of elements on the boundary
of each plate is assumed to be equal, and is Ng. The number of elements along the
junction line is Nj. The equilibrium equations, which describe the relationships between
the displacements and tractions of the connected plates, can be found in the matrices
labelled E.
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(Matrlx A for plate i)
looooe
(Matrix A for plate 2)
L ol{eloNolo
e e
J| RN EEEEGC

Figure 4. The A matrix for the assembled plate structure in Figure 3.

For an assembled plate structure, the plates are joined together by junction lines, as
shown in Figure 3. The junction line is along the x;-axis. Each plate has its own local set of

coordinates (xi, xé, xé) withi=1,2,...,

N, where N is the number of plates. To account for

the fact that neighbouring plates will influence one another in terms of displacements and
tractions, equilibrium equations must be derived along junction lines. These equilibrium

equations are used in the matrices labelled E in Figure 4.
The displacement equilibrium equations are shown in Equations (13)—-(17):

ulcos(8Y) — wisin(6') = uzcos(6?) — wisin(6?) = ... = ulNcos(8V) — wlsin(6N)
ulsin(0') + wicos(0') = uZsin(6%) + wicos(6?) = ... = ulVsin(6N) + w} cos(8)
=13 = =u)
ol = = =
wh = w3 = wﬁ_\[ =0

The traction equilibrium equations are shown in Equations (18)—(21):

N

Y. (tlcos( - p3szn(6’)) =0

i=1
N
Z ( 1sin(6

=1

) + p3cos(61)) 0

1=
SR
Il
o

I
—

=
=
=
I
o

I
—

(13)

(14)
(15)
(16)
(17)

(18)

(19)

(20)

(21)
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where ' is the angle of the local coordinate axis xa of the i’th plate to the global coordinate
axis x1, and u! is the displacement in the local coordinate axis x| of the i'th plate, etc. In
the equilibrium equations shown above, it is assumed that there is no offset between the
membranes of the joined plates. The equations in the case where is there an offset can be

found in [1].

2.4. The Implicit Differentiation Method for Plate Structures

In the Implicit Differentiation Method (IDM), the derivatives of Equations (5) and (6)
can be calculated with respect to a geometric parameter Z,, (such as the length or width of

a plate), or with respect to the thickness of the plate .

The derivative of Equation (5) with respect to Z;, is shown in Equation (22):

N
CMup+ Y (/ T ¢}drne+/ T T (drm)m>u

ne=1
N,
+Z(ATW%%}%
( / U yldr,, + / Umtpe(drm)m>t"e
ne=1

+2(Aw%agﬁ

ne=1

The derivative of Equation (5) with respect to h is shown in Equation (23):

Ne
Cuy+ Y (/ T yldr, + / T T (dl"ne)h>u

ne=1

( 5 TmtpEdrm)
n*l
( / U pldr,, + / Uyl (dr,,) )t”"
ne=1
+ gl ( / n)Umtperl“nE>tf}f

The derivative of Equation (6) with respect to Z,, is shown in Equation (24):

Ne
Crwu+ 3 ( J. Toplar,+ [Tyl ) &

ne=1
(/ Tbt/ﬂ?drne) w
ne=1
U Tar Uh e
tl)e ne lpe drn&) P
Ne *1
( / Uhtpjdrne)
ne=1
+a3 Y (/ B! dl’né+/ BY(dT,,), )
ne=1

(22)

(23)

(24)
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The derivative of Equation (6) with respect to & is shown in Equation (25):

Ne
Chwyi+ ), (/r Thgldb + [ Tbr/f;f(drne),h)w”f (25)

ne=1

Ne
+ Y </r Tbt[;;rdl"ng>wf;f

ne=1

Ne
- 3 ([ vhtan s [ vtian, e
He= ne ne

N
E (foen s

ne=1

N,
+4q3 ) ( /r BSdI,, + /r Bb(dl"ne),h>

ne=1

In the above equations, T, T,bm, U%,Uf’m, and Bf’m are the derivatives of the funda-
mental solutions with respect to a geometric parameter Z;,;, and their full expressions can
be found in [22]. T,’Z, Tf’h, U,’Z,Uf’ , and Bf’h are the derivatives with respect to plate thickness
h, and their full expressions can be found in [19].

The derivatives of u¢, w', t%, and p" in Equations (7)—(10) are shown in
Equations (26)—(29):

ne ] Ne
. u Te Uiy
wii = | " Wi = | (26)
2,m | 2,h
e ne
“m @1
Ne __ Ne __
who= [wp,| o wi= |, @)
w3,€m_ w?;h
t £
Ne __ , Ne __ ,
th = t”fm th = e (28)
2,m | 2,h
ne ] Ne
Piom P
Ne __ 71 e
P P%fm Py = |Pon (29)
> n
Paim | P3

Using Equations (22) and (24), a system of equations can be formed as shown in
Equation (30):
H,u+Hu, = Gt+ Gt (30)

Likewise, using Equations (23) and (25), another system of equations can be formed as
shown in Equation (31):
Hju+Huj, = G,t+ Gt (31)

where H, G, u, and t are from Section 2.2. H ,,;, G, Wy, t,u, H), G, uy,, and t, are their
derivatives. Equations (30) and (31) can be rewritten as shown in Equations (32) and (33):

AX,, = [F,m - A,mx} (32)

AX, = [Fj — AX] (33)
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In the above system of equations, A and X are outputs from Equation (12). A ;,; and
F ;; are found by rearranging Equation (30), whereas A j, and F , are found by rearranging
Equation (31). Therefore, the right-hand sides of Equations (32) and (33) are known, and
the only unknowns are X ;; and X j,, which can be found via LU decomposition.

2.5. The Implicit Differentiation Method for Assembled Plate Structures

The matrix A ;,, and the matrix A ; of the assembled plate structure in Figure 3 are
shown in Figures 5 and 6, respectively. The matrix A ;,;, and the matrix A j, of each plate
were calculated in terms of its local coordinate system. The derivatives of the equilibrium
equations, which describe the relationships between the derivatives of the displacements
and tractions of the connected plates, can be found in the matrices labelled E ;; and E , in
Figures 5 and 6, respectively.

For an assembled plate structure, it is necessary to calculate the derivatives of the
displacement equilibrium Equations (13)—(17) and the derivatives of the traction equilib-
rium Equations (18)—(21). These derivatives are used in the matrices labelled E ;,, and E , in
Figures 5 and 6, respectively.

Matrix A,m f01" plate‘Z
( )

N |4

N, @

N; | |

Figure 5. The A ;; matrix for the assembled plate structure in Figure 3.
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N, @
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&

Figure 6. The A ;, matrix for the assembled plate structure in Figure 3.

The derivatives of the displacement equilibrium Equations (13)—(17) with respect to a
geometrical parameter Z,, are shown in Equations (34)-(38):

U yeos(0') + uj [cos(@l)] — w3, sin(0') — wj [sin(@l)],m
= ”1 1nCOS %) + [cos(@z)],m — w%rmsin(Gz) — w% [sin(Gz)],m (34)
=...=uf,cos(0N) + 1] [cos(@N)},m — w},sin(ON) — w [sin(QN)]/m

Lmsin(0") + u [sin(@l)] + w3, c0s(6') + w3 [cos(Gl)],m

=ui,,sin(6%) + uj [szn(@z)} + w3 ,,c05(6%) + w3 [cos(6%)] m (35)
= ... =uf,sin(0) + u] [szn(GN)]’m + wh,cos (V) + wl [cos(QN)],m

u%,m = u%{m =...= ué\{m (36)

w%m = w%m =...= wi\lm (37)

w%m = w%/m =...= wé\]m =0 (38)

The derivatives of the traction equilibrium Equations (18)—(21) with respect to a
geometrical parameter Z,, are shown in Equations (39)-(42):

N

Y (timcos(ei) + ] [cos(f)i)]/m — pb sin(6%) — ph [sin(@i)],m> =0 (39)
i=1
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3 (Hhsin(6) + £ [sin(6)] , + pbucos(6') + p} cos(8")] ) =0 (40)
i=1
N .
Yt =0 (41)
i=1
N .
Y Pam =0 (42)

I
—

The derivatives of the displacement equilibrium Equations (13)—(17) with respect to
plate thickness & are shown in Equations (43)—(47):

uihcos(f)l) — w%,hsin(f)l)

= u%/hcos(é)z) - w%lhsin(ez)

_ (43)
= ull\,]hcos(GN) - wé\,}hsin(GN)
uihsin(()l) + wé,hcos(f)l)
= u3 ,5in(6%) + w3 ,cos(6%) )
; ull\{hsin(GN) + wghcos(GN)
u%,h = “%,h =...= ué\,}h (45)
w%’h = wih =..= w{\{h (46)
w%/h = wih =...= wé\fh = 47)

The derivatives of the traction equilibrium Equations (18)—(21) with respect to a
geometrical parameter Z,, are shown in Equations (48)—(51):

N . . . . .
) (t’llhcos(()’) +1 - pgrhsin(()l)) =0 (48)
i=1
(tllrhsin((%l) + pé,hcos(Ql)) =0 (49)
i=1
N .
Y By =0 (50)
i=1
N .
Y Py =0 (51)
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3. Numerical Examples
3.1. Numerical Example 1: L-Shaped Plate

To validate the developed Implicit Differentiation Method (IDM) for assembled plate
structures, the L-shaped structure shown in Figure 7 was investigated. This structure is
composed of two plates joined together. One plate is clamped at one of its edges, and the
other plate is subjected to tension along one of its edges. The two plates are composed of
steel with a Young’s modulus E = 206.8 GPa and Poisson’s ratio v = 0.29. The geometry of
the structure can be defined in terms of the four parameters L, W, 6, and #, as shown in
Figure 7 and detailed in Table 1.

~—~
-~
~~
h =X

~—

Figure 7. The L-shaped plate investigated in numerical example 1.

Table 1. The parameters of the L-shaped plate investigated in numerical example 1.

Parameter Description Value

L Length of plate 1 and 2 100 mm
W Width of plate 1 and 2 50 mm
0 Angle of plate 2 50°

h Thickness of plate 1 and 2 10 mm

The maximum displacement magnitude 17,75 occurs at the loaded edge of plate 1. To

validate the IDM, the derivatives of uy:5 with respect to the parameters in Table 1 were
calculated via three different methods:

*  Method 1: The IDM methodology described in Section 2. This method is referred to
as IDM-BEM".

e Method 2: The BEM with the forward Finite Difference Method (FDM). This method
is referred to as ‘FDM-BEM’.

e Method 3: The Finite Element Method (FEM) with the forward FDM. This method is
referred to as ‘FDM-FEM’. The FEM software Abaqus FEA was used in this work.

Before a comparison can be made between these three methods, a mesh convergence
study must be carried out for the BEM and the FEM. The results are shown in Figure 8. The
BEM mesh is considered to have reached convergence with 80 elements, whereas the FEM
mesh is considered to have reached convergence with 800 elements. These two converged
meshes are shown as red markers in Figure 8.
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3.220 x 1072 N e N e
] —©O—BEM| |
) ] --X--FEM | [
3215x 10724 W& s Sl o N [
] B2, 3
23210 x 102 - B
&) :
2> ] ! i
££3.205 x 1072 1 ,'X L
s : B '
3.200 x 102 - i
] X i
3.195 x 1072 — — — A
10! 102 103 104 10°

Number of elements

Figure 8. Mesh convergence with the Boundary Element Method (BEM) and the Finite Element
Method (FEM). The BEM and FEM meshes considered to have reached convergence are shown as
red markers.

Using the converged meshes for the BEM and the FEM, the sensitivities of i, with
respect to the parameters in Table 1 can be calculated using the three methods introduced
earlier. The results are shown in Figure 9.

It is shown in Figure 9 that there is excellent agreement between the three methods
‘IDM-BEM’, 'FDM-BEM’, and ‘FDM-FEM'. The average difference between IDM-BEM and
FDM-FEM was, at most, only 1.9% for W, and only 0.11% for L. The average difference
between IDM-BEM and FDM-BEM was even smaller, and was, at most, 0.61% for 6 and
only 0.073% for W. The excellent agreement between IDM-BEM and FDM-FEM, and
between IDM-BEM and FDM-BEM, demonstrates the very high accuracy of the IDM when
calculating sensitivities.

X107

T I S S S T T S T S T S S T ST S ST I TS ST T [ S S |

2.5

| | -©—FDM-FEM
1 |--X--FDM-BEM
2.0 o |~+IDM-BEM

*/dL
&

max
mag

du™™
=
o

P

O'O I L L L L L
50 60 70 80 90 100 110 120 130 140 150
L (mm)

(a)

Figure 9. Cont.
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_1.0\'"'X""l""l‘"'I""T""T""I""l
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mag / dh
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—10! ;“: L e
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h (mm)

(d)

Figure 9. The sensitivities of the maximum displacement magnitude u};7; with respect to (a) length

mag

L, (b) width W, (c) plate angle 6, and (d) plate thickness h, for the three methods ‘IDM-BEM’,

‘FDM-BEM’, and ‘FDM-FEM’.
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3.2. Numerical Example 2: X-Core

To further validate the developed Implicit Differentiation Method (IDM) for assembled
plate structures, a significantly more complex structure was investigated with many more
geometrical parameters.

The Eurofighter Typhoon has canards to increase its manoeuvrability, as shown in
Figure 10. These canards are made of titanium and are manufactured using super-plastic
forming and diffusion bonding, which results in a continuously connected structure. A
cross-section of one of these canards is shown in Figure 11. It consists of eight X-core
sections. An approximation of this cross-section is shown in Figure 12 (front-view) and
in Figure 13 (side-view). The cross-section was subjected to the uniform pressure loading
g3 = 1 MPa on the top and bottom surfaces.

Figure 10. A canard of the Eurofighter Typhoon (highlighted with a red circle).

Figure 11. A cross-section of one of the canards from the Eurofighter Typhoon.
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X5 — x5 plane of symmetry

Figure 12. An approximation of the canard cross-section (front-view).
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X — x3 plane of symmetry

Figure 13. An approximation of the canard cross-section (side-view).

The canard cross-section has two planes of symmetry; these are plane x; — x3 in
Figure 12 (front-view) and plane x; — x3 in Figure 13 (side-view). By using these planes of
symmetry, a simplified cross-section can be obtained, as shown in Figure 14 (front-view)
and Figure 15 (side-view). The geometry of this simplified cross-section can be described in
terms of the six variables Wy, Wy, L1, Ly, h1, hp and also the height H and depth D, details
of which are shown in Table 2. The structure is made of titanium with a Young’s modulus
E =110 GPa and Poisson’s ratio v = 0.3. The structure has symmetry boundary conditions
along the planes of symmetry.

The BEM model consists of 14 individual plates joined together. Symmetric boundary
conditions were applied along the edges corresponding to the x; — x3 and x; — x3 planes of
symmetry such that the displacement in direction x1 is zero (17 = 0) for edges on the plane
x2 — x3 and the displacement in direction x; (12 = 0) for edges on the plane x; — x3. For the
node corresponding to the centre of the coordinate system (0,0,0), the vertical displacement
was set to zero (w3 = 0).

X, — X3 plane of symmetry

hq [
: |

4 - / \ X3

H hy X
L1 «—> | 1
L, ;
| |
<«
2 W, Wi
2

Figure 14. A simplified version of the canard cross-section (front-view).
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X, — X3 plane of symmetry

AX3

—
p/2 |

Figure 15. A simplified version of the canard cross-section (side-view).

Table 2. The parameters of the X-core structure investigated in numerical example 2.

Parameter Description Value
W Width of outer long plate 15 mm
W, Width of outer short plate 42 mm
Ly Length of inner inclined plate 10 mm
L, Length of inner horizontal plate 6 mm

hy Thickness of outer plate 2.8 mm
hy Thickness of inner plate 0.8 mm
H Height 21.5 mm
D Depth 25 mm

A displacement contour plot of the X-core structure is shown in Figure 16. The
maximum displacement magnitude ;35 occurs at the middle of the top and bottom plates.
To validate the IDM, the sensitivities of uya; with respect to the parameters in Table 1
were calculated via the three different methods introduced in Section 3.1: ‘IDM-BEM’,
‘FDM-BEM’, and ‘FDM-FEM".

A
r Ay

Figure 16. Displacement contour plot.

Before a comparison can be made between these three methods, a mesh convergence
study must be carried out for the BEM and the FEM. The results of this mesh convergence
study are shown in Figure 17. The BEM mesh is considered to have reached convergence
with 1120 elements, whereas the FEM mesh is considered to have reached convergence
with 19,800 elements. These two converged meshes are shown as red markers in Figure 17.
The converged BEM mesh is shown in Figure 18 and it is composed of 14 individual plates
joined together.
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107 107 10* 107 100
Number of elements
Figure 17. Mesh convergence with the Boundary Element Method (BEM) and the Finite Element

Method (FEM). The BEM and FEM meshes considered to have reached convergence are shown as
red markers.

Figure 18. The converged BEM mesh. The 14 plates are labelled P1-P14.

Using the converged meshes for the BEM and the FEM, the sensitivities of i,z with
respect to the parameters in Table 2 can be calculated using the three methods introduced
earlier. The results are shown in Figure 19.
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Figure 19. Cont.



Aerospace 2022, 9, 381

19 of 24

0.016 PRI S N T T S R S T PR PR PR IS S N TR S S T SR S SR T S T

| |-©—FDM-FEM =
--X--FDM-BEM

50

W (mm)
(b)
-3
34 ><|10| 1 1 1 1 1 L 1 1 L n L 1 L 1 L 1 1 1 L 1 L
] —O—FDM-FEM | [
--X--FDM-BEM| |
32_g _______________ ey~ +'““IDM-BEM L
3 3.0 -
= ]
~
S
g8
S 2.8 -
2.6 -
2'4"‘‘I"‘'I'"'I‘"'\""I""I""I“"
8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
L; (mm)
(c)
-3
750 é: 10 L 1 1 1 L 1 I L 1 L L 1 L 1 1 L L L I L L n n Il n " L n
] —O— FDM-FEM
—6.0 1
S 7.0
=
~
g3
5804
—9.0 1
—~10.0 1
3

Figure 19. Cont.




Aerospace 2022, 9, 381

20 of 24

_004 M R [ [ [
| |[-&—FDM-FEM
—0.06 . :“—X:FDM-BEM i
~ —0.08 - L
=
3
§§—0.10 g -
:§F
—0.12 - L
—0.14 i
—0.16 & — e T ——
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
hi (mm)
(e)
7005 IR S S S I TN ST S SN AT ST A SN TN ST S ST S TN ST ST SN Y ST SN ST AN SN SO ST S M S
1 |—©—FDM-FEM
_0.10 | |-X--FDM-BEM

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
hy (mm)

()
Figure 19. The sensitivities of the maximum displacement magnitude u};7; with respect to (a) Wy,
(b) Wa, (c) Ly, (d) Ly, (e) h1, and (f) h; for the three methods ‘IDM-BEM’, ‘FDM-BEM’, and ‘FDM-FEM'.

It is shown in Figure 19 that there is excellent agreement between the three methods
‘IDM-BEM’, ‘/FDM-BEM’, and ‘FDM-FEM'. The average difference between IDM-BEM and
FDM-FEM was, at most, only 1.5% for Wy, and only 0.29% for h;. The average difference
between IDM-BEM and FDM-BEM was even smaller, and was, at most, 0.31% for L,
and only 0.034% for L. The excellent agreement between IDM-BEM and FDM-FEM and
between IDM-BEM and FDM-BEM demonstrates the very high accuracy of the IDM when
calculating sensitivities for this very complex example.

To compare the computational efficiency of the three methods, they were each used to
calculate 100 sensitivities of the X-core structure. This comparison is shown in Table 3. It is
shown that the methods ‘FDM-FEM’ and ‘FDM-BEM’ require a similar amount of CPU time
(1120 s vs. 1149 s) to calculate 100 sensitivities. The method ‘IDM-BEM’ is significant more
computationally efficient than the other two methods—it is 22% faster than ‘FDM-FEM’
and 24% faster than 'FDM-BEM’.
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Table 3. CPU time to calculate 100 sensitivities using each of the three methods.

Method CPU Time (s)
FDM-FEM 1120
FDM-BEM 1149
IDM-BEM 870

3.3. Numerical Example 3: Shape Optimisation of the X-Core

The previous two numerical examples validated the newly developed IDM for assem-
bled structures with a simple example and with a significantly more complex example. To
demonstrate how the IDM could be used in practice, it is used in this example to optimise
the shape of the X-core structure investigated in the previous numerical example.

The shape of the X-core structure was optimised such that its mass was minimised
while the maximum displacement magnitude uy;zz was less than 0.1 mm. The height H
and depth D of the X-core were also fixed at 21.5 mm and 25 mm, respectively. The total
width of the X-core Wi = 3W; + 2W, was also fixed at 129 mm. The optimisation problem
is shown in Equation (52):

Minimise: Mass(d) (52)
Subjectto:  df<d<dY, deR™

uMmx < 0.1 mm

mag =
H =215 mm
D =25 mm

Wiot = 3W; + 2W, = 129 mm

where the design variables are d = [Wy, Wy, Ly, Ly, hq, hp], and n; = 6. The initial design
is dy = [15,42,10,6,2.8,0.8]. The lower and upper bounds are: dt = 0.75 x dy and
dY = 1.25 x dy. The mass can be calculated using the design variables d and the density of
titanium p = 4.41 x 1073 g/mm3.

The IDM was used to solve the above optimisation problem. The optimisation pro-
cedure was stopped once the relative change in mass between iterations fell to below
0.1% and upgs below or equal to 0.1 mm with a tolerance of 0.001 mm. The results of
this optimisation procedure can be seen in Figure 20. It is shown in this Figure that the
optimisation procedure successfully minimised the mass of the X-core structure—the mass
was initially 27 g and was reduced to 23.5 g after 62 iterations. The maximum displacement

magnitude 1,50 was initially 0.139 mm and was reduced to 0.101 mm after 62 iterations.

: ...... +Mass
1 max
27j+ﬂ T mag |- 1.0
11
26 |
: L0.8
g
,0.6\_/
§g
SRS
b =
) +_H_+++++++++++++++++ L o4
+++++++++++
-0.2
) i S R S S e 00
0 10 20 30 40 50 6 o

Iteration

Figure 20. Results of the shape optimisation of the X-core structure.



Aerospace 2022, 9, 381

22 of 24

The shape and the values for the shape parameters of the X-core structure before and
after the shape optimisation procedure are shown in Figure 21 and Table 4. It is shown
that the height H and depth D of the X-core structure are unchanged, which was expected.
The width of the X-sections have been made wider and the thickness of the inner plates
has also been increased, whereas the thickness of the outer plates has been reduced. This
had the effect of reducing the mass of the X-core structure and its maximum displacement

magnitude .

K X
X X

Figure 21. The X-core structure before the IDM shape optimisation (top). The X-core structure after

the IDM shape optimisation (bottom).

Table 4. The parameters of the X-core structure before and after shape optimisation.

Shape Parameter (mm)
Design W1 W2 L1 L2 hl hz H D Wtot Mass (g) Mmg; (mm)

Before 150 420 100 6.0 28 080 215 25 129 270 0.139
After 188 364 108 75 21 098 215 25 129 235 0.101

In summary, this numerical example demonstrated the effectiveness of the IDM when
used in practice for optimising the shape of a complex assembled structure, such as an
X-core structure with many geometric design variables.

4. Conclusions

In conclusion, a novel methodology was presented for conducting sensitivity analyses
of assembled plate structures using the Boundary Element Method (BEM). The main
novelty of this work was that the exact implicit derivatives of the BEM formulations for
assembled plate structures were derived for the first time and incorporated into a newly
developed Implicit Differentiation Method (IDM) for performing structural sensitivity
analyses—enabling sensitivity analyses to be conducted for more complex and realistic
structures in a more accurate, robust, and efficient manner. Several numerical examples
were presented to validate the derived exact implicit derivatives and to demonstrate how
they could be used for a potential application involving the shape optimisation of a complex
X-core structure from the canard of a Eurofighter Typhoon fighter jet. The values of six
geometrical parameters were optimised to minimise the maximum displacement in the
X-core. The newly developed IDM was found to be very similar in terms of accuracy
to the Finite Difference Method (FDM), demonstrating percentage differences less than
2%. The IDM was also found to be over 20% more computationally efficient than the
FDM. Furthermore, unlike the FDM, the IDM does not require a step-size, meaning that,
compared to the FDM, the IDM is significantly more robust. Potential applications include
the shape optimisation or structural reliability analysis of complex plate structures.

Future work will aim to develop an IDM for assembled shell structures, enabling the
sensitivity analysis of complex aircraft structures such as fuselage panels or wing sections.
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Sensitivity analyses involving buckling and large-deflections will also be investigated to
expand the range of possible applications.

Author Contributions: Conceptualisation, L.M., VM., Z.S.-K. and FM.H.A_; formal analysis, L.M.;
funding acquisition, V.M.; investigation, L.M.; methodology, L. M., VM. and EM.H.A ; project admin-
istration, V.M., Z.5.-K. and EM.H.A ; software, L.M.; supervision, V.M.; validation, L.M. and V.M.;
visualisation, L.M.; writing—original draft, L.M. and V.M.; writing—review and editing, V.M., Z.S.-K.
and FM.H.A. All authors have read and agreed to the published version of the manuscript.

Funding: This project has received funding from the Clean Sky 2 Joint Undertaking (JU) under grant
agreement No 864154 Project MASCOT. The JU receives support from the European Union’s Horizon
2020 research and innovation programme and the Clean Sky 2 JU members other than the Union.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Aliabadi, M.H. The Boundary Element Method: Applications in Solids and Structures; John Wiley and Sons: Chichester, UK, 2002;
Volume 2.

2. Tafreshi, A. Shape optimization of two-dimensional anisotropic structures using the boundary element method. J. Strain Anal.
Eng. Des. 2003, 38, 219-232. [CrossRef]

3. Abe, K; Kazama, S.; Koro, K. A boundary element approach for topology optimization problem using the level set method.
Commun. Numer. Methods Eng. 2006, 23, 405-416. [CrossRef]

4.  Canelas, A.; Herskovits, J.; Telles, ].C.F. Shape optimization using the boundary element method and a SAND interior point
algorithm for constrained optimization. Comput. Struct. 2008, 86, 1517-1526. [CrossRef]

5. Ullah, B,; Trevelyan, J. Correlation between hole insertion criteria in a boundary element and level set based topology optimisation
method. Eng. Anal. Bound. Elem. 2013, 37, 1457-1470. [CrossRef]

6. Chang, Y.,; Cheng, H.; Chiu, M.; Chien, Y. Shape Optimisation of Multi-Chamber Acoustical Plenums Using BEM, Neural
Networks, and GA Method. Arch. Acoust. 2016, 41, 43-53. [CrossRef]

7. Ullah, B.; Trevelyan, J. A boundary element and level set based topology optimisation using sensitivity analysis. Eng. Anal.
Bound. Elem. 2016, 70, 80-98. [CrossRef]

8.  Liu, C; Chen, L.; Zhao, W.; Chen, H. Shape optimization of sound barrier using an isogeometric fast multipole boundary element
method in two dimensions. Eng. Anal. Bound. Elem. 2017, 85, 142-157. [CrossRef]

9. Ullah, B.; Trevelyan, J.; Sirajul, I. A boundary element and level set based bi-directional evolutionary structural optimisation with
a volume constraint. Eng. Anal. Bound. Elem. 2017, 80, 152-161. [CrossRef]

10. Takahashi, T.; Yamamoto, T.; Shimba, Y.; Isakari, H.; Matsumoto, T. A framework of shape optimisation based on the isogeometric
boundary element method toward designing thin-silicon photovoltaic devices. Eng. Comput. 2018, 35, 423-449. [CrossRef]

11.  Matsushima, K.; Isakari, H.; Takahashi, T.; Matsumoto, T. A topology optimisation of composite elastic metamaterial slabs based
on the manipulation of far-field behaviours. Struct. Multidiscip. Optim. 2020, 63, 231-243. [CrossRef]

12.  Maduramuthu, P; Fenner, R.T. Three-dimensional shape design optimization of holes and cavities using the boundary element
method. J. Strain Anal. Eng. Des. 2004, 39, 87-98. [CrossRef]

13. Bandara, K.; Cirak, F; Of, G.; Steinbach, O.; Zapletal, ]. Boundary element based multiresolution shape optimisation in
electrostatics. J. Comput. Phys. 2015, 297, 584-598. [CrossRef]

14. Ullah, B.; Trevelyan, J.; Ivrissimtzis, I. A three-dimensional implementation of the boundary element and level set based structural
optimisation. Eng. Anal. Bound. Elem. 2015, 58, 176-194. [CrossRef]

15. Chen, L.L; Lian, H; Liu, Z.; Chen, H.B.; Atroshchenko, E.; Bordas, S.P.A. Structural shape optimization of three dimensional
acoustic problems with isogeometric boundary element methods. Comput. Methods Appl. Mech. Eng. 2019, 355, 926-951.
[CrossRef]

16. Gaggero, S.; Vernengo, G.; Villa, D.; Bonfiglio, L. A reduced order approach for optimal design of efficient marine propellers.
Ships Offshore Struct. 2019, 15, 200-214. [CrossRef]

17. Li, S,; Trevelyan, J.; Wu, Z.; Lian, H.; Wang, D.; Zhang, W. An adaptive SVD-Krylov reduced order model for surrogate based
structural shape optimization through isogeometric boundary element method. Comput. Methods Appl. Mech. Eng. 2019,
349, 312-338. [CrossRef]

18.  Morse, L.; Sharif Khodaei, Z.; Aliabadi, M.H. A multi-fidelity boundary element method for structural reliability analysis with

higher-order sensitivities. Eng. Anal. Bound. Elem. 2019, 104, 183-196. [CrossRef]


http://doi.org/10.1243/030932403765310554
http://dx.doi.org/10.1002/cnm.919
http://dx.doi.org/10.1016/j.compstruc.2007.05.008
http://dx.doi.org/10.1016/j.enganabound.2013.08.003
http://dx.doi.org/10.1515/aoa-2016-0004
http://dx.doi.org/10.1016/j.enganabound.2016.06.001
http://dx.doi.org/10.1016/j.enganabound.2017.09.009
http://dx.doi.org/10.1016/j.enganabound.2017.02.012
http://dx.doi.org/10.1007/s00366-018-0606-6
http://dx.doi.org/10.1007/s00158-020-02689-y
http://dx.doi.org/10.1177/030932470403900107
http://dx.doi.org/10.1016/j.jcp.2015.05.017
http://dx.doi.org/10.1016/j.enganabound.2015.04.005
http://dx.doi.org/10.1016/j.cma.2019.06.012
http://dx.doi.org/10.1080/17445302.2019.1606877
http://dx.doi.org/10.1016/j.cma.2019.02.023
http://dx.doi.org/10.1016/j.enganabound.2019.03.036

Aerospace 2022, 9, 381 24 of 24

19.

20.

21.

22.

23.

24.

Morse, L.; Mallardo, V.; Aliabadi, EM.H. Manufacturing cost and reliability-based shape optimization of plate structures. Int. J.
Numer. Methods Eng. 2022, 123, 2189-2213. [CrossRef]

Mallardo, V.; Aliabadi, M.H. A BEM sensitivity and shape identification analysis for acoustic scattering in fluid-solid problems.
Int. ]. Numer. Methods Eng. 1998, 41, 1527-1541. [CrossRef]

Mallardo, V.; Alessandri, C. Inverse problems in the presence of inclusions and unilateral constraints a boundary element
approach. Comput. Mech. 2000, 26, 571-581. [CrossRef]

Morse, L.; Sharif Khodaei, Z.; Aliabadi, M.H. A dual boundary element based implicit differentiation method for determining
stress intensity factor sensitivities for plate bending problems. Eng. Anal. Bound. Elem. 2019, 106, 412-426. [CrossRef]

Brancati, A.; Aliabadi, M.H.; Mallardo, V. A BEM sensitivity formulation for three-dimensional active noise control. Int. J. Numer.
Methods Eng. 2012, 90, 1183-1206. [CrossRef]

Dirgantara, T.; Aliabadi, M.H. Crack Growth analysis of plates Loaded by bending and tension using dual boundary element
method. Int. . Fract. 1999, 105, 27-47.


http://dx.doi.org/10.1002/nme.6931
http://dx.doi.org/10.1002/(SICI)1097-0207(19980430)41:8<1527::AID-NME352>3.0.CO;2-O
http://dx.doi.org/10.1007/s004660000206
http://dx.doi.org/10.1016/j.enganabound.2019.05.021
http://dx.doi.org/10.1002/nme.3369

	Introduction
	Methodology
	Plate Theory Notation in the Boundary Element Method
	The Boundary Element Method for Plate Structures
	The Boundary Element Method for Assembled Plate Structures
	The Implicit Differentiation Method for Plate Structures
	The Implicit Differentiation Method for Assembled Plate Structures

	Numerical Examples
	Numerical Example 1: L-Shaped Plate
	Numerical Example 2: X-Core
	Numerical Example 3: Shape Optimisation of the X-Core

	Conclusions
	References

