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Abstract. In this work we study the global solution, uniqueness and as-
ymptotic behaviour of the nonlinear equation

utt − ∆pu = ∆u− g ∗ ∆u

where ∆pu is the nonlinear p-Laplacian operator, p ≥ 2 and g ∗ ∆u is

a memory damping. The global solution is constructed by means of the

Faedo-Galerkin approximations taking into account that the initial data is
in appropriated set of stability created from the Nehari manifold and the

asymptotic behavior is obtained by using a result of P. Martinez based on

new inequality that generalizes the results of Haraux and Nakao.

Mathematics Subject Classification: 35B40, 35L70, 35A01, 74DXX.
Key words and phrases: p-Laplacian operator; global solution; asymptotic

behaviour; memory.

1. Introduction

Throughout this paper we omit the space variable x of u(x, t), simply denote
u(x, t) by u(t) when no confusion arises and c denotes various positive constants
depending on the known constants and may be different at each appearance.
We use the Sobolev space with its properties as in R. A. Adams [1] and H.
Brezis [2]. Let Ω ∈ R be a open and bounded interval, 2 ≤ p < ∞ and p′
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such that
1

p
+

1

p′
= 1. The duality pairing between the space W 1,p

0 (Ω) and its

dual W−1,p′(Ω) will be denoted using the form 〈 · , · 〉p. According to Poincarè’s
inequality, the standard norm ‖ · ‖W 1,p

0 (Ω) is equivalent to the norm ‖∇ · ‖p on

W 1,p
0 (Ω). Henceforth, we put ‖ · ‖W 1,p

0 (Ω) = ‖∇ · ‖p. We denote ‖ · ‖L2(Ω) = | · |2
and the usual inner product by ( · , · ). We denote the p-Laplacian operator
by ∆pu, which can be extended to a monotone, bounded, hemicontinuous and

coercive operator between the spaces W 1,p
0 (Ω) and its dual by

−∆p : W 1,p
0 (Ω)→W−1,p′(Ω)

〈−∆pu, v〉p =

∫
Ω

|∇u|p−2∇u∇v dx

Nonlinear hyperbolic problems involving the p-Laplacian are becoming the ob-
ject of increasing interest only in recent years. The existence of a global solution
for wave equation of p-Laplacian type

utt −∆pu = 0 (1)

without an additional dissipation term is an open problem. For n = 1, M.
Derher [3] proved the local in time existence of solution and showed by a generic
counter-example that the global in time solution can not be expected.
Adding a strong damping (−∆ut) in (1) the well-posedness and asymptotic
behavior was studied by J. M. Greenberg [4]. In fact, the strong damping plays
an important role on the existence and stability for p-Laplacian wave equation see
for instance for n ≥ 2 [5, 6, 7, 8, 9, 10, 11, 12]. Nevertheless, if the strong damping
is replaced by a weaker damping (ut), then global existence and uniqueness are
only know for n = 1, 2, see [13, 14]. For the intermediary damping given by
((−∆)αut), with 0 < α ≤ 1 in [15] was proved the global solution depending on
the growth of a forcing term. The background of these problems are in physics,
especially in solid mechanics.
From what we know this is the first time that a alternative damping for wave
equation with the p-Laplacian operator is considered. In this work we consider
a memory damping, acting only on ∆u given by the usual convolution

g ∗∆u(x, t) =

∫
Ω

g(t− s)∆u(x, s) ds

with the kernel g as real-valued function.
We have interest in proving the existence of a global solution and energy decay
to the problem

utt −∆pu=∆u− g ∗∆u in Ω× [0,∞), (2)

u(x, 0)=u0(x), ut(x, 0) = u1(x), x ∈ Ω, (3)

u(x, t)=0 on ∂Ω× [0,∞). (4)

This paper is organized as follows. Section 2 deals with the potential well,
we introduce the stability set for the problem. In the Section 3 we introduce
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some notations and preliminaries results. In the section we introduce a suitable
Galerkin basis. In the Section 5 we prove the existence of solution by Faedo-
Galerkin method and finally in the Section 6 we use the result of P. Martinez [16]
that generalizes the results of Haraux [17] and Nakao [18] to prove the energy
decay in a appropriate set of stability.

2. The Potential Well

It is well known that the energy of a PDE system is, in some sense, split into
kinetic and potential energy. Following the idea of Y. Ye [9] we are able to
construct a set of stability as follows. We will prove that there is a valley or
a well of depth d created in the potential energy. If this height d is strictly
positive, we find that, for solutions with initial data in the good part of the well,
the potential energy of the solution can never escape the well. In general, it is
possible for the energy from the source term to cause the blow-up in finite time.
However in the good part of the well it remains bounded. As a result, the total
energy of the solution remains finite on any time interval [0, T ), which provides
the global existence of the solution. We started by introducing the functional
J : W 1,p

0 (Ω)→ R by

J(u) =
1

p
‖∇u‖pp −

1

2

∫
Ω

(
g ∗ |∇u|2

)
(t) dx. (5)

For u ∈W 1,p
0 (Ω) we define the functional

J(λu) =
λp

p
‖∇u‖pp −

λ

2

∫
Ω

(
g ∗ |∇u|2

)
(t) dx, 0 < λ ≤ 1. (6)

Associated with the J we have the well known Nehari Manifold given by

N def
=

{
u ∈W 1,p

0 (Ω)/{0} :

[
d

dλ
J(λu)

]
λ=1

= 0

}
.

From (6) we get

d

dλ
J(λu) = λp−1‖∇u‖pp −

1

2

∫
Ω

(
g ∗ |∇u|2

)
(t) dx,

then

N def
=

{
u ∈W 1,p

0 (Ω)/{0} : ‖∇u‖pp =
1

2

∫
Ω

(
g ∗ |∇u|2

)
(t) dx

}
.

We define as in the Mountain Pass theorem due to Ambrosetti and Rabinowitz
[19],

d
def
= inf

u∈W 1,p
0 (Ω)/{0}

sup
0≤λ

J(λu).

It is well-known that the depth of the well d is a strictly positive constant, see
[[20], Theorem 4.2], and

d = inf
u∈N

J(u).
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In fact, in our problem, the solution of
d

dλ
J(λu) = 0 is

λ∗ =


1

2

∫
Ω

(
g ∗ |∇u|2

)
(t) dx

‖∇u‖pp


1

p− 1

.

We have
d2

dλ2
J(λu) = (p− 1)λp−2‖∇u‖pp > 0,

and then λ∗ is a global minimum.
For p ≥ 2, J(λ∗u) < 0, so we introduce the sets

W1 = {u ∈W 1,p
0 (Ω); J(λ∗u) ≤ J(λu) ≤ 0}

and

W2 = {u ∈W 1,p
0 (Ω); 0 < J(λu)}.

The potential well is defined byW = {u ∈W 1,p
0 : J(u) < d}∪{0} and partition

it into two sets

V =

{
u ∈ W :

1

2

∫
Ω

(
g ∗ |∇u|2

)
(t) dx ≤ ‖∇u‖pp

}
∪ {0},

W =

{
u ∈ W : ‖∇u‖pp <

1

2

∫
Ω

(
g ∗ |∇u|2

)
(t) dx

}
.

We will refer to V as the “good” part of the well and W as the “bad” part of
the well. Then we define by V the set of stability for the problem (2)-(4).

3. Preliminaries

We introduce the symbols “�” and “�” which denote the following convolutions
respectively

(g�h)(t)
def
=

∫ t

0

g(t− s)|h(t)− h(s)|2 ds,

(g � h)(t)
def
=

∫ t

0

g(t− s) (h(t)− h(s)) ds.

We state two basic results, see [21], that will be used in the sequel.

Lemma 3.1. For any functions g, h ∈ C ([0,∞],R) we have that

(g ∗ h)(t) =

(∫ t

0

g(s) ds

)
h(t)− (g � h)(t)

|(g � h)(t)|2 ≤
(∫ t

0

|g(s)|ds
)

(|g|�h)(t)
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Lemma 3.2. For g, h ∈ C ([0,∞],R) we have

2(g ∗ h)(t)h′(t) = (g′�h)(t)− g(t)|h(t)|2 +
d

dt

[(∫ t

0

g(s) ds

)
|h(t)|2 − (g�h)(t)

]
From now and on, the function g is of exponential type, this is, g > 0 and
∃ ci > 0, (i = 0, 1) such that

−c0g(t) ≤ g′(t) ≤ −c1g(t) and 1−
∫ ∞

0

g(t) dt <∞.

The energy of the problem (2)-(4) is defined as

E(t)
def
=

1

2
|u′(t)|22 +

1

p
‖∇u(t)‖pp +

1

2

(
1−

∫ t

0

g(s) ds

)
|∇u(t)|22 +

1

2
(g�∇u)(t).

Now we present the result of P. Martinez [16] on decay rate estimates for dissi-
pative system that will used in the section 6.

Lemma 3.3. Let E : R+ → R+ be a non increasing function and φ : R+ → R+

an increasing function such that

φ(0) = 0 and φ(t)→ +∞ as t→ +∞.
Assume that there exist q ≥ 0 and A > 0 such that∫ +∞

S

E(t)q+1φ′(t) dt ≤ AE(S), 0 ≤ S < +∞.

Then we have

E(t) ≤ cE(0) (1 + φ(t))
−1
q , ∀ t ≥ 0 if q > 0

and
E(t) ≤ cE(0)e−wφ(t), ∀ t > 0 if q = 0,

where c and w are positive constants independent of the initial energy E(0).

The energy of the problem (2)-(4) is defined as

E(t)
def
=

1

2
|u′(t)|22 +

1

p
‖∇u(t)‖pp +

1

2

(
1−

∫ t

0

g(s) ds

)
|∇u(t)|22 +

1

2
(g�∇u)(t).

4. The Galerkin basis

Denote by

Kj = {K ⊂ {u ∈ Lp(Ω) : ||u||p = 1} : K is compact, symmetric and γ(K) ≥ j},
where γ(G) = inf{m : ∃φ : G → R/{0}, φ odd continuous function} denotes
the Krasnoselski genus. In [22] it is proved that

λj = inf
G∈Kj

sup
u∈G
||∇u||pp

is a sequence of eigenvalue of the p-Laplacian. −∆p : W 1,p
0 (Ω)→W−1,p′(Ω) is a

monotone, coercive and hemicontinuous operator on W 1,p
0 (Ω). Minty-Browder
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theorem, see [23], guarantees the existence of a basis (wj)
∞
j=1 for W 1,p

0 (Ω) given
by the solution of the stationary problem

−∆pwj = λjwj ,
wj(0) = w0j .

Using

W 1,p
0 (Ω) ⊂ L2(Ω) ⊂W−1,p′(Ω) (7)

with continuous and dense injection for 1 < p < ∞, see [2], this basis can be
extended on L2(Ω) as a basis of Galerkin to Laplacian operator.
In fact, from Sobolev immersion we have

W ν,q
0 (Ω) ↪→W ν−k,qk

0 (Ω),
1

qk
=

1

q
− k

n
.

Choosing qk = p, ν − k = 1 and q = 2 we get

ν = 1 +
n

2
− n

p
= 1 +

n(p− 2)

2p
> 0

and we obtain a Hilbert Space Hν
0 (Ω) such that

Hν
0 (Ω) = W ν,2

0 (Ω) ↪→W 1,p
0 (Ω).

Let s an integer for which s > ν. We have

Hs
0(Ω) ↪→W 1,p

0 (Ω) ↪→ H1
0 (Ω) ↪→ L2(Ω).

By Rellich-Kondrachov theorem, H1
0 (Ω) ↪→ L2(Ω) is compact, so the immersion

Hs
0(Ω) ↪→ L2(Ω) is also. From spectral theory, there exists a operator defined

by

{Hs
0(Ω), L2(Ω), ((·, ·))Hs

0 (Ω)}

and a sequence of eigenvectors (vj)j∈N of this operator, such that

((vj , v))Hs
0 (Ω) = λj(vj , v), for all v ∈ Hs

0(Ω)

with λj > 0, λj ≤ λj+1, and λj → +∞ as j → +∞. Moreover (vj)j∈N is

a complete orthonormal system in L2(Ω) and

(
wj =

vj√
λj

)
j∈N

is a complete

orthonormal system in Hs
0(Ω). Then (wj)j∈N yields a “Galerkin basis” for both

W 1,p
0 (Ω) and L2(Ω).

5. Global Solution

5.1. Existence.

Theorem 5.1. Given u0 ∈ V , u1 ∈ L2(Ω) there exists a function

u : Ω× (0, T )→ R
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such that

u ∈ L∞(0, T ;W 1,p
0 (Ω)), u′ ∈ L∞(0, T ;L2(Ω)),

u(x, 0) = u0(x), ut(x, 0) = u1(x) a.e. in Ω,
d

dt
(ut, v) + 〈−∆pu, v〉p + (−∆u, v) + (g ∗∆u, v) = 0, ∀ v ∈W 1,p

0 (Ω) in D′(0, T ).

Proof. Now, for each m ∈ N, let us put Vm = Span{w1, w2, . . . , wm}. We search

for a function um(t) =

m∑
j=1

kjm(t)wj such that for any v ∈ Vm, um(t) satisfies

the approximate equation

(u′′m(t), v) + 〈−∆pum(t), v〉p + (−∆um(t), v) + (g ∗∆um(t), v) = 0, (8)

with the initial conditions um(0) = u0m and u′m(0) = u1m, where u0m e u1m are
closed in Vm so that

w0m → u0 ∈ W 1,p
0 (Ω) and u1m → u1 in L

2(Ω).

Putting v = wi, i = 1, 2, . . . ,m, and using

u′′m(t) =

m∑
j=1

k′′jm(t)wj(x),

∆um(t) =

m∑
j=1

kjm(t)∆wj(x),

∆pum(t) =

m∑
j=1

kjm(t)∆pwj(x),

(g ∗∆um)(t) =

m∑
j=1

(g ∗ kjm)(t)∆wj(x),

we observe that (8) is a system of ODEs in the variable t and has a local solution
um(t) in a interval [0, tm), by virtue of Carathéodory’s theorem, see [24]. In the
next step we obtain priori estimates for the solution um(t) so that it can be
extended to the whole interval [0, T ], T > 0.

Priori Estimates: We replace v = u′m(t) in the approximate equation (8)
and we get

(u′m(t), u′m(t))−〈∆pum(t), u′m(t)〉p− (∆um(t), u′m(t)) + (g ∗∆um(t), u′m(t)) = 0
(9)

Let θ ∈ D(0, tm). We denote by 〈 · , · 〉 the duality pairing between D′ and D.
So we have,

〈(u′′m(t), u′m(t)), θ〉 =

〈
1

2

d

dt
|u′m(t)|22, θ

〉
(10)

〈〈−∆pum(t), u′m(t)〉p, θ〉 =

〈
1

p

d

dt
‖∇um(t)‖pp, θ

〉
(11)
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〈(−∆um(t), u′m(t)), θ〉 =

〈
1

2

d

dt
|∇um(t)|22, θ

〉
(12)

Now, note that

(g ∗∆um(t), u′m(t)) = − ((g ∗ ∇um)(t),∇u′m(t)) .

By Lemma 3.2 we have

2 ((g ∗ ∇um)(t),∇u′m(t)) =

∫
Ω

(g′�∇um)(t) dx− g(t)

∫
Ω

|∇um(t)|2 dx

−
∫

Ω

d

dt

[
(g�∇um)(t)−

(∫ t

0

g(s) ds

)
|∇u(t)|2

]
dx.

Then,

〈(g ∗∆um(t), u′m(t)), θ〉 =

〈
−1

2

∫
Ω

(g′�∇um)(t) dx+
1

2
g(t)|∇um(t)|22

+
1

2

d

dt

∫
Ω

(g�∇um)(t) dx−
(∫ t

0

g(s) ds

)
|∇um(t)|22, θ

〉
.

(13)

Replacing (10), (11), (12), (13) in (9) we obtain in D′(0, tm)

d

dt

{
1

2
|u′m(t)|22 +

1

p
‖∇um(t)‖pp +

1

2
(g�∇um)(t) +

1

2

(
1−

∫ t

0

g(s) ds

)
|∇um(t)|22

}
=

1

2

∫
Ω

(g′�∇um)(t) dx− 1

2
g(t)|∇um(t)|22 (14)

The approximate energy

Em(t) =
1

2
|u′m(t)|22+

1

p
‖∇um(t)‖pp+

1

2

(
1−

∫ t

0

g(s) ds

)
|∇um(t)|22+

1

2
(g�∇um)(t)

satisfies
d

dt
Em(t) ≤ −c1

2

∫
Ω

(g�∇um)(t) dx− 1

2
g(t)|∇um(t)|22.

Then Em(t) ≤ Em(0). Due to convergence of initial data, there exists a constant
c > 0 independent of t and m such that Em(t) ≤ c. With this estimate we can
extend the aproximate solutions um(t) to the interval [0, T ], see [25], and we
have

um(t)is bounded inL∞(0, T ;W 1,p
0 (Ω)), (15)

u′m(t)is bounded inL∞(0, T ;L2(Ω)), (16)

−∆pum(t)is bounded inL∞(0, T ;W−1,p′(Ω)). (17)

From (15) and Lemma 3.1 we deduce

(g ∗ ∇um)(t) is bounded in L∞(0, T ;L2(Ω)). (18)

Passage to the Limit: From (15), (16), (18) going to the subsequence if
necessary, there exists u such that

um ⇀ u weakly star in L∞(0, T ;W 1,p
0 (Ω)) (19)
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u′m ⇀ u′ weakly star in L∞(0, T ;L2(Ω)) (20)

g ∗ ∇um ⇀ g ∗ ∇u weakly star in L∞(0, T ;L2(Ω)) (21)

and in view of (17) there exists X such that

−∆pum(t)→ X weakly in L∞(0, T ;W−1,p′(Ω)). (22)

With these convergence we can pass to the limit in the approximate equation
(8) see [26, 27], and then

d

dt
(u′(t), v) + 〈X (t), v〉p + (−∆u(t), v) + ((g ∗ ∇u)(t), v) = 0,

for all v ∈W 1,p
0 (Ω) in the sense of distributions.

For x, y ∈ R and p ≥ 2, consider the elementary inequalities∣∣∣|x| p−2
2 x− |y|

p−2
2 y
∣∣∣ ≤ C (|x| p−2

2 + |y|
p−2
2

)
|x− y|, (23)∣∣|x|p−2x− |y|p−2y

∣∣ ≤ C (|x| p−2
2 + |y|

p−2
2

) ∣∣∣|x| p−2
2 x− |y|

p−2
2 y
∣∣∣ . (24)

The inequality (23) is a consequence of the mean value theorem and (24) can be
found in [28]. As in [29] applying (23), (24) and Hölder generalized inequality
with

p− 2

4p
+
p− 2

4p
+

1

2
+

1

p
= 1

we deduce for all v ∈W 1,p
0 (Ω)∣∣∣∣∣

∫ T

0

〈−∆pum(t), v〉p − 〈−∆pu(t), v〉p dt

∣∣∣∣∣ ≤ c
∫ T

0

|∇um(t)−∇u(t)|2 dt.

Now we are going to obtain an estimate for u′′m(t). Since our Galerkin basis was
taken in the Hilbert space L2(Ω) we can use the standard projection arguments as
described in Lions [26]. Then from the approximate equation and the estimates
(15)-(17) we get

u′′m(t) is bounded in L∞(0, T ;W−1,q(Ω)). (25)

Applying the Lions-Aubin compactness we get from (19), (20) and (25),

um(t)→ u(t) strongly in L2(0, T ;L2(Ω)), (26)

u′m(t)→ u′(t) strongly in L2(0, T ;L2(Ω)). (27)

Using (26) we get that um(t) → u(t) almost everewhere in Ω × (0, T ) and we
have,

−∆pum(t)→ −∆pu(t) weakly in L∞(0, T ;W−1,p′(Ω)). (28)

From (22), (28) and uniqueness of the limit we conclude that X (t) = −∆pu(t).
The verification of the initial data is a routine procedure. The prove of existence
is complete.

�
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5.2. Uniqueness. Let u and v be solutions of (2)-(4) such that

u(x, 0) = u0 = v(x, 0) and ut(x, 0) = u1 = vt(x, 0).

Denoting w = u− v we have

utt −∆w=∆pu−∆pv − g ∗∆w, in Ω× [0,∞), (29)

w(x, 0)=0, ut(x, 0) = 0, x ∈ Ω, (30)

w(x, t)=0 on ∂Ω× [0,∞). (31)

We will use the Vǐsik-Ladyenskaya method [30]. Consider for each η ∈ [0, T ] the
following function

ψ(x, t) =

 −
∫ η

t

w(x, ξ) dξ , 0 ≤ t < η,

0 , η ≤ t ≤ T.
(32)

Then,

ψt(x, t) =

{
w(x, t) , 0 ≤ t < η,

0 , η ≤ t ≤ T.
(33)

As w ∈ L∞(0, T ;W 1,p
0 (Ω)), wt ∈ L∞(0, T ;L2(Ω)) we have

ψ, ψt ∈ L∞(0, T ;L2(Ω)). (34)

Mutiplying (29) by ψ and performing integration on Ω

(wtt, ψ) + (∇w,∇ψ) = 〈∆pu−∆pv, ψ〉p − (g ∗∆w,ψ).

Integrating in [0, η] and taking into account that ψ(x, t) ≡ 0 for all t ∈ [η, T ], we
have∫ η

0

(wtt, ψ) dt+

∫ η

0

(∇w,∇ψ) dt =

∫ η

0

〈∆pu−∆pv, ψ〉p dt−
∫ η

0

(g ∗∆w), ψ) dt.

As ψ(η) = w(0) = 0 we get

−
∫ η

0

(wt, ψt) dt+

∫ η

0

(∇w,∇ψ) dt =

∫ η

0

〈∆pu−∆pv, ψ〉p dt−
∫ η

0

((g∗∆w)(t), ψ) dt.

From (31), (32) and (33)

−
∫ η

0

(wt, w) dt+

∫ η

0

(∇ψt,∇ψ) dt =

∫ η

0

〈∆pu−∆pv, ψ〉p dt−
∫ η

0

(g ∗∆w,ψ) dt.

That is

−1

2

∫ η

0

d

dt
|w|22 dt+

1

2

∫ η

0

d

dt
|∇ψ|22 dt =

∫ η

0

〈∆pu−∆pv, ψ〉p dt−
∫ η

0

((g∗∆w)(t), ψ) dt,

that implies

− 1

2
|w(η)|22−

1

2
|∇ψ(0)|22 ≤

∫ η

0

〈∆pu−∆pv, ψ〉p dt−
∫ η

0

((g ∗∆w)(t), ψ) dt (35)
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As before, applying (23), (24) and Hölder generalized inequality with

p− 2

4p
+
p− 2

4p
+

1

p
+

1

2
= 1

we obtain

|〈∆pu−∆pv, ψ〉p| ≤ c|∇ψ|2. (36)

From (34) and continuous and dense injection (7) we deduce that g ∗ ∆w ∈
L2(0, T ;L2(Ω)). Then∣∣∣∣∫

Ω

(g ∗∆w)(t)ψ dx

∣∣∣∣ ≤ (∫
Ω

|g ∗∆w|2 dx

) 1
2
(∫

Ω

|ψ|2 dx

) 1
2

≤ c|ψ|2. (37)

From (35), (36), (37), Poincarè and Cauchy-Schwarz inequalities we deduce

1

2
|w|22 +

1

2
|∇ψ(0)|22 ≤ c

∫ η

0

|∇ψ|22 dt. (38)

Now we introduce w1(x, t) =

∫ t

0

w(x, ξ) dξ, for all t ∈ [0, ξ) we have

ψ(x, t) = −
∫ η

0

w(x, ξ) dξ = −
∫ η

0

w(x, ξ) dξ+

∫ t

0

w(x, ξ) dξ = w1(x, t)−w1(x, η),

(39)
and then

ψ(x, 0) = w1(x, 0)− w1(x, η) = −w1(x, η). (40)

From (38), (39) and (40) we obtain

1

2
|∇w1|22 ≤ c

∫ η

0

|∇w1|22 dt.

By Gronwall’s inequality we conclude |∇w1|22 ≤ 0. By (39) we deduce that
∇ψ = 0 in L2(Ω) for all t ∈ [0, T ]. Finally follows from (38) that |w|22 ≤ 0 and
then u = v in L2(Ω) for all t ∈ [0, T ].

6. Asymptotic Behaviour

Theorem 6.1. Let u be a solution of (2)-(4) with initial data u0 ∈ V , u1 ∈
L2(Ω). For φ : R+ → R+ a increasing C2 function such that φ(0) = 0 and

φ(t)
t→+∞−−−−→ +∞ we have for q > 0

E(t) ≤ cE(0)(1 + φ(t))
−1
q , ∀ t > 0 (41)

where c is a positive constant independent of the initial energy E(0).

Proof. We will use Lemma 3.3 due to P. Martinez [16] based on a new inequality
that generalizes a result of Haraux [17]. For the goal we start the proof of (41)
multiplying (2) by Eq(t)φ′(t)u and so we set∫ T

0

Eqφ′
∫

Ω

u(utt −∆pu−∆u+ g ∗∆u) dxdt = 0,
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from where we obtain by straight calculations

2

∫ T

S

Eq+1φ′ dt ≤ −
[
Eqφ′

∫
Ω

uut dx

]T
S

+4

∫ T

S

[(
qE′Eq−1φ′ + Eqφ′′

) ∫
Ω

uut dx

]
dt

+4

∫ T

S

[
Eqφ′

1

2

∫
Ω

|ut|2 dx

]
dt+

∫ T

S

[
Eqφ′

1

2

∫
Ω

g�∇udx

]
dt

+

∫ T

S

[
Eqφ′

1

2

∫
Ω

∫ t

0

g(t− s)|∇u(s)|2 dsdx

]
dt

+

∫ T

S

[
Eqφ

1

2

∫
Ω

|∇u|2 dx

∫ T

0

g(t− s) ds

]
dt. (42)

In the stability set V we have

1

2

∫ t

0

g(t− s)|∇u(s)|2 ds ≤ 1

p
‖∇u(s)‖pp. (43)

Replacing (43) in (42) we obtain∫ T

S

Eq+1φ′ dt ≤ −
[
Eqφ′

∫
Ω

uut dx

]T
S

+

∫ T

0

[(
qE′Eq−1φ′ + Eqφ′′

) ∫
Ω

uut dx

]
dt

+
3

2

∫ T

S

Eqφ′
∫

Ω

|ut|2 dxdt. (44)

Now, we will estimate each term on the right side of (44). Applying the same
argument as in [6] we deduce∣∣∣∣∣

[
Eqφ′

∫
Ω

uut dx

]T
S

∣∣∣∣∣ ≤ cE(s), ∀ t ≥ S (45)

and ∣∣∣∣∣
∫ T

S

[(
qE′Eq−1φ′ + Eqφ′′

) ∫
Ω

uut dx

]
dt

∣∣∣∣∣ ≤ cE(s), ∀ t ≥ S. (46)

The estimate of

∫ T

S

Eqφ′
∫

Ω

|ut|2 dxdt is quite delicate. Let σ : R+ → R+ be

a strictly positive function such that

∫ ∞
0

σ(t) dτ = +∞. φ(t) =

∫ t

0

σ(τ) dτ

satisfies φ(0) = 0 and φ(t)
t→+∞−−−−→ +∞. Consider ρ(t, u) ≤ −E′(t).
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According to the [6] for all 0 < S < T ande l < m+ 1∫ T

S

Eqφ′
∫

Ω

|ut|l dx dt ≤ c

∫ T

S

Eqφ′
∫

Ω

1

σ(t)
utρ(t, u) dx dt

+c′
∫ T

S

Eqφ′
∫

Ω

(
1

σ(t)
utρ(t, u)

) l
m+1

dxdt

≤ c

∫ T

S

Eq
φ′

σ(t)
(−E′)

∫
Ω

|u′|dx dt

+c′
∫ T

S

Eqφ′σ−
l

m+1 (t)(−E′)
l

m+1

∫
Ω

|u′|
l

m+1 dxdt.

Applying Hölder inequality, using l < m+ 1, |u′|22 < c we get∫ T

S

Eqφ′
∫

Ω

|ut|l dxdt ≤ c

∫ T

S

Eq
φ′

σ(t)
(−E′) dt

+c′
∫ T

S

Eqφ′
m+1−l
m+1

(
φ′

σ(t)

) l
m+1

(−E′)
l

m+1 dt.

For fix and arbitrarily small ε > 0 (to be chosen later). By applying Young’s

inequality
1

m+1
m+1−l

+
1

m+1
l

= 1 we obtain

∫ T

S

Eqφ′
∫

Ω

|u′|l dxdt ≤ c

∫ T

S

Eq
φ′

σ(t)
(−E′) dt

+c′
m+ 1− l
m+ 1

ε
m+1

m+1−l

∫ T

S

Eq
m+1

m+1−lφ′ dt

+c′
l

m+ 1

∫
Ω

(−E′) φ′

σ(t)
ε−

m+1
l dt.

From where follows∫ T

S

Eqφ′
∫

Ω

|ut|l dx dt ≤ cEq(s) + c′
m+ 1− l
m+ 1

ε
m+1

m+1−l

∫ T

S

Eq
m+1

m+1−lφ′ dt

+c′
l

m+ 1
ε−

m+1
l E(s).

Making l = 2, ρ(t, u) =
1

2

∫
Ω

(g�∇u)(t) dx e choosing q such that

m+ 1

m+ 1− l
=
q + 1

q

we obtain∫ T

S

Eqφ′
∫

Ω

|ut|2 dxdt ≤ cE(s)+c
m− 2

m+ 1
ε

m+1
m−1

∫ T

S

Eq+1φ′ dt+
2c

m+ 1
ε−

m+1
2 E(s)

(47)
Now we deduce from (44), (45), (46) and (47)(

1− cm− 1

m+ 1
ε

m+1
m−1

)∫ T

S

Eq+1φ′ dt ≤ c(ε)E(s).
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Finally, choosing ε small enough we concludes∫ T

S

Eq+1φ′ dt ≤ cE(s), q > 0

and the proof is complete. �

Concluding remarks

When p = 2 is well known that the equation (2) describes a homogeneous and
isotropic viscoelastic solid and the genuine memory g ∗ ∆u induces a damping
mechanism so the asymptotic stability is to be expected. For instance, for the
nonhomogeneous problem with function f independent of time and source term
the existence of a global attractor was proved in [31]. The problem with super-
critical source and damping terms was studied in [32]. Employing the theory of
monotone operators and nonlinear semigroups, combined with energy methods
was established the existence of a unique local weak solution in the finite energy
space. As follow-up work, recently in [33] was considered supercritical nonlin-
earities and was studied blow-up of solutions when the source is stronger than
dissipation. For The case p > 2 the nonlinear equation (2) leads to a problem
not previously considered. The highlight here was to prove the existence of solu-
tion and energy decay in the appropriate set of stability created from the Nehari
manifold.
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