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DEGENERATE/SINGULAR PARABOLIC EQUATIONS FROM
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Abstract. This paper deals with the determination of a coefficient in the
diffusion term of some degenerate /singular one-dimensional linear para-
bolic equation from final data observations. The mathematical model leads
to a non convex minimization problem. To solve it, we propose a new ap-
proach based on a hybrid genetic algorithm (married genetic with descent
method type gradient). Firstly, with the aim of showing that the mini-
mization problem and the direct problem are well-posed, we prove that the
solution’s behavior changes continuously with respect to the initial condi-
tions. Secondly, we chow that the minimization problem has at least one
minimum. Finally, the gradient of the cost function is computed using the
adjoint state method. Also we present some numerical experiments to show
the performance of this approach.
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1. Introduction

This article is devoted to the identification of a diffusion coefficient in degen-
erate/singular parabolic equation by the variational method, from final data
observation. The problem we treat can be stated as follows:
Consider the following degenerate parabolic equation with singular potential
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





∂tu+A(u) = f
u(0, t) = u(1, t) = 0 ∀t ∈ (0, T )
u(x, 0) = u0(x) ∀x ∈ Ω

(1)

where, Ω = (0, 1), f ∈ L2(Ω× (0, T )) and A is the operator defined as

A(u) = −∂x(a(x)∂xu(x))−
λ

xβ
u, a(x) = k(x)xα

with α ∈ (0, 1), β ∈ (0, 2− α), and λ ≤ 0, 0 < k(x) ≤ c1
The formulation of the inverse problem is

{

find k ∈ Aad such that
J(k) = min

κ∈Aad

J(κ), (2)

where the cost function J is defined as follows

J(k) =
1

2
‖u(t = T )− uobs‖2L2(Ω) , (3)

subject to u is the weak solution of the parabolic problem (1). The space Aad

is the admissible set of diffusion coefficients.
The functional J is non convex, any descent algorithm will be stopped at the
meeting of the first local minimum. To stabilize this problem, the classical
method is to add to J a regularizing term coming from the regularization of
Tikhonov. So, we obtain the functional

JT (κ) =
1

2
‖u(t = T )− uobs‖2L2(Ω) +

ε

2

∥

∥κ− kb
∥

∥

2

L2(Ω)
. (4)

But, in reality, kb is partially known, than the determination of the parameter
ε, which presents an important difficulty. Until these lines are written, there is
no effective method for determining this parameter. In the literature, we found
two popular methods : cross-validation and Lcurve (see [1, 2, 3, 4]). For these
two methods it is necessary to solve the problem with several different values of
the regularization parameter.
To show the difficulty of determining the parameter ε when we have a partial
knowledge of kb (example 20%) in points of space, we did several test for different
epsilon values, the results are as follows

ε Minimum value of J
1 2.230238.10−02

10−01 1.277236.10−02

10−02 1.093206.10−02

10−03 2.093763.10−02

10−04 3.029143.10−02

10−05 2.92163.10−03

10−06 1.12187.10−02
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Table 1. Results on the Tikhonov approach. Comparison between different
values of regularizing coefficient ε.

Figure 1. Graph of k in case ε = 10−05

In Table 1, the smallest value of J is reached when ε = 10−05, and the Figure 1
shows that we can’t rebuild the coefficient k in case ε = 10−05. We can conclude
that the method of choosing ε by doing several tests for different epsilon values
is not effective.
To overcome this problem, in case where kb is partially known, we propose in
this work, a new approach based on Genetic Hybrid algorithms which consists
to minimize the functional J without any regularization. This work is the conti-
nuity of [5] where the authors identify the initial state of a degenerate parabolic
problem.
Firstly, with the aim of showing that the minimization problem and the direct
problem are well-posed, we prove that the solution’s behavior changes continu-
ously with respect to the initial conditions. Secondly, we show that the mini-
mization problem has at least one minimum. Finally, The gradient of the cost
function is computed using the adjoint state method. Also we present some
numerical experiments to show the performance of this approach.

2. Well-posedness

Now we specify some notations we shall use. Let introduce the following func-
tional spaces (see [6, 7, 8])

V =
{

u ∈ L2(Ω), u absolutely continuous on [0, 1]
}

, (5)

S =
{

u ∈ L2(Ω),
√
aux ∈ L2(Ω) and u(0) = u(1) = 0

}

, (6)

H1
a(Ω) = V ∩ S, (7)

H2
a(Ω) =

{

u ∈ H1
a(Ω), aux ∈ H1(Ω)

}

, (8)

H1
α,0 = {u ∈ H1

α | u(0) = u(1) = 0},

H1
α = {u ∈ L2(Ω) ∩H1

Loc(]0, 1]) | x
α

2 ux ∈ L2(Ω)}.
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With
‖ u ‖2H1

a
(Ω)=‖ u ‖2L2(Ω) + ‖

√
aux ‖2L2(Ω),

‖ u ‖2H2
a
(Ω)=‖ u ‖2H1

a
(Ω) + ‖ (aux)x ‖2L2(Ω),

< u, v >H1
α
=

∫

Ω

(uv + k(x)xαuxvx) dx.

We recall that (see [8]) H1
a is an Hilbert space and it is the closure of C∞

c (0, 1)
for the norm ‖ . ‖H1

a
. If 1√

a
∈ L1(Ω) then the following injections

H1
a(Ω) →֒ L2(Ω),

H2
a(Ω) →֒ H1

a(Ω),

H1(0, T ;L2(Ω)) ∩ L2(0, T ;D(A)) →֒ L2(0, T ;H1
a) ∩C(0, T ;L2(Ω))

are compacts.
Firstly, we prove that the problem (1) is well-posed, the functional J is contin-
uous and G-derivable in Aad.

The weak formulation of the problem (1) is :
∫

Ω

∂tuv dx+

∫

Ω

(

a(x)∂xu∂xv −
λ

xβ
uv

)

dx =

∫

Ω

fv dx, ∀v ∈ H1
0 (Ω). (9)

Let the bilinear form

B[u, v] =
∫

Ω

(

a(x)∂xu∂xv −
λ

xβ
uv

)

dx. (10)

Since a(x) = 0 at x = 0 and lim
x→0

λ

xβ
= +∞, the bilinear form B is noncoercive

and is non-continuous at x = 0.
Consider the not bounded operator (O, D(O)) where

Og = (k(x)xαgx)x +
λ

xβ
g, ∀g ∈ D(O) (11)

and

D(O) = {g ∈ H1
α,0 ∩H2

Loc(]0, 1]) | (xαgx)x +
λ

xβ
g ∈ L2(Ω)}.

Let

Aad = {g ∈ H1(Ω); ‖g‖H1(Ω) ≤ r}, where r is a real strictly positive constant.
(12)

We recall the following theorem

Theorem 2.1. (see [7, 10]) If f = 0 then for all u ∈ L2(Ω), the problem (1) has
a unique weak solution

u ∈ C([0, T ];L2(Ω)) ∩ C(]0, T ];D(O)) ∩ C1(]0, T ];L2(Ω)) (13)

if more u0 ∈ D(O) then

u ∈ C([0, T ];D(O)) ∩ C1([0, T ];L2(Ω)) (14)
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if f ∈ L2(]0, 1[×(0, T )) then for all u0 ∈ L2(Ω), the problem (1) has a unique
solution

u ∈ C([0, T ];L2(Ω)).� (15)

We recall the following theorem

Theorem 2.2. (see [11]) For every u0 ∈ L2(Ω) and f ∈ L2(QT ), where QT =
((0, T ) × Ω) there exists a unique solution of problem (1). In particular, the
operator O : D(O) 7−→ L2(Ω) is non positive and self-adjoint in L2(Ω) and it
generates an analytic contraction semigroup of angle π/2. Moreover, let u0 ∈
D(O); then
f ∈W 1,1(0, T ;L2(Ω)⇒ u ∈ C0(0, T ;D(O)) ∩ C1([0, T ];L2(Ω)),
f ∈ L2(L2(QT ))⇒ u ∈ H1(0, T ;L2(Ω).

Theorem 2.3. Let u the weak solution of (1), the function

ϕ : H1(Ω) −→ C([0, T ];L2(Ω))
k 7−→ u

(16)

is continuous, and the functional J is continuous in Aad. Therefore, the problem
2 has at least one solution in Aad .�

Proof of Theorem 2.3. Let δk ∈ H1(Ω) a small variation such that k+ δk ∈ Aad

and u0 ∈ D(O). Consider δu = uδ − u, with u is the weak solution of (1) with
diffusion coefficient k, and uδ is the weak solution of the following problem (17)
with diffusion coefficient kδ = k + δk.











∂tu
δ − ∂x((k + δk)xα∂xu

δ)− λ

xβ
uδ = f(x, t) ∈ Ω× (0, T )

uδ |x=0= uδ |x=1= 0,
uδ(x, 0) = u0(x)

(17)

(17)-(1) give











∂t(δu)− ((k + δk)xα∂xδu)− (δkxα∂xu)−
λ

xβ
δu = 0

δu(0, t) = δu(1, t) = 0 ∀t ∈ (0, T )
δu(x, 0) = 0 ∀x ∈ Ω.

(18)

The weak formulation for (18) is
∫

Ω

∂t(δu)v dx+

∫

Ω

(

(k + δk)xα∂x(δu)∂x(v) −
λ

xβ
(δu)v

)

dx

−
∫

Ω

(δkxα∂xu)x v dx = 0, ∀v ∈ H1
0 (Ω). (19)

Take v = δu, then
∫

Ω

∂t(δu)δu dx+

∫

Ω

(

(k + δk)xα(∂xδu)
2 − λ

xβ
(δu)2

)

dx

−
∫

Ω

(δkxα∂xu)x δu dx = 0. (20)
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We have
∫

Ω

(

(k + δk)xα(∂xδu)
2 − λ

xβ
(δu)2

)

dx ≥ 0,

this implies that
∫

Ω

∂t(δu)δu dx−
∫

Ω

(δkxα∂xu)x δu dx ≤ 0 (21)

and consequently

∣

∣

∣

∣

∫

Ω

∂t(δu)δu dx

∣

∣

∣

∣

≤
∫

Ω

|(δkxα∂xu)x δu| dx, (22)

then
∫

Ω

∂t(δu)δu dx ≤ ‖δk‖L∞(Ω)

∫

Ω

|∂xu∂xδu| dx. (23)

By integrating between 0 and t with t ∈ [0, T ] we obtain

1

2
‖δu(t)‖2L2(Ω) ≤ ‖δk‖L∞(Ω)

∫ T

0

∫

Ω

|∂xu∂xδu| dxdt, (24)

since u, δu ∈ H1(0, T ;L2(Ω)), we have

∫ T

0

∫

Ω

|∂xu∂xδu| dxdt <∞,

there is C > 0, such that

sup
t∈[0,T ]

‖δu(t)‖2L2(Ω) ≤ 2C‖δk‖L∞(Ω), (25)

which give

‖δu(t)‖2C([0,T ];L2(Ω)) ≤ 2C‖δk‖H1(Ω). (26)

Hence, the functional J is continuous in

Aad = {u ∈ H1(Ω); ‖u‖H1(Ω) ≤ r}. (27)

We have H1(Ω) →֒
compact

L2(Ω). Since the set Aad is bounded in H1(Ω), then Aad

is a compact in L2(Ω). Therefore, J has at least one minimum in Aad

�

Now we compute the gradient of J with the adjoint state method.

3. Gradient of J

We define the Gâteaux derivative of u at k in the direction h ∈ L2(Ω×]0, T [), by

û = lim
s→0

u(k + sh)− u(k)

s
, (28)

u(k + sh) is the weak solution of (1) with diffusion coefficient k + sh, and u(k)
is the weak solution of (1) with diffusion coefficient k.
The Gâteaux (directional) derivative of (1) at k in some direction h ∈ L2(Ω)
gives
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













∂û

∂t
− ∂

∂x

(

kxα ∂û

∂x

)

− ∂

∂x

(

hxα ∂u

∂x

)

− λ

xβ
û = 0

û(x = 0, t) = û(x = 1, t) = 0,

û(x, t = 0) = 0.

We introduce the adjoint variable P , and we integrate,
∫ T

0

∫ 1

0

(

∂û

∂t
p− ∂

∂x

(

kxα ∂û

∂x

)

p− ∂

∂x

(

hxα ∂u

∂x

)

p

)

dxdt = 0.

Calculate separately each term :

∫ T

0

∫ 1

0

∂û

∂t
p =

∫ 1

0

[ûp]T0 dx−
∫ 1

0

∫ T

0

∂p

∂t
ûdtdx,

∫ T

0

∫ 1

0

∂

∂x

(

kxα ∂û

∂x

)

pdxdt =

∫ T

0

[(

kxα ∂û

∂x

)

p

]1

0

dt−
∫ T

0

∫ 1

0

kxα ∂û

∂x

∂p

∂x
dxdt

=

∫ T

0

[(

kxα ∂û

∂x

)

p

]1

0

dt

−
∫ T

0

[

kxαû
∂p

∂x

]1

0

dt+

∫ T

0

∫ 1

0

∂

∂x

(

kxα ∂p

∂x

)

ûdxdt

=

∫ T

0

[(

kxα ∂û

∂x

)

p

]1

0

dt+

∫ T

0

∫ 1

0

∂

∂x

(

kxα ∂p

∂x

)

ûdxdt.

∫ T

0

∫ 1

0

p

(

∂

∂x

(

hxα ∂u

∂x

))

dxdt =

∫ T

0

[

hxα ∂u

∂x
p

]1

0

dt−
∫ T

0

∫ 1

0

h
∂u

∂x

∂p

∂x
dxdt.

We pose p(x = 1, t) = 0, p(x = 0, t) = 0, p(x, t = T ) = 0,

we obtain

∫ T

0

〈û, ∂tP −AP 〉L2(Ω)dt = 〈h,
∫ T

0

xα ∂p

∂x

∂u

∂x
dt〉L2(Ω)

P (x = 0) = P (x = 1) = 0, P (T ) = 0.

(29)

The discretization in time of (29), using the Rectangular integration method,
gives

M+1
∑

j=0

〈û(tj), ∂tP (tj)−AP (tj)〉L2(Ω)∆t = 〈h,
∫ T

0

xα ∂p

∂x

∂u

∂x
dt〉L2(Ω)

P (x = 0) = P (x = 1) = 0, P (T ) = 0.

(30)
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With
tj = j∆t, j ∈ {0, 1, 2, . . . ,M + 1},

where ∆t is the step in time and T = (M + 1)∆t.
The Gâteaux derivative of J at k in the direction h ∈ L2(Ω) is given by

Ĵ(h) = lim
s→0

J(k + sh)− J(k)

s
.

After some computations, we arrive at

Ĵ(h) = 〈u(T )− uobs, û(T )〉L2(Ω). (31)

The adjoint model is

∂tP (T )− AP (T ) =
1

∆t
(u(T )− uobs), ∂tP (tj)−AP (tj) = 0 ∀tj 6= T

P (x = 0) = P (x = 1) = 0 ∀tj ∈]0;T [
P (T ) = 0.

(32)

From equations (30), (31) and (32), the gradient of J is given by

∂J

∂k
=

∫ T

0

xα ∂p

∂x

∂u

∂x
dt. (33)

Problem (32) is retrograde, we make the change of variable t←→ T − t.

4. Numerical scheme

Step 1. Full discretization
Discrete approximations of these problems need to be made for numerical im-
plementation. To resolve the direct problem and adjoint problem, we use the

Method θ-schema in time. This method is unconditionally stable for 1 > θ ≥ 1

2
.

Let h the steps in space and ∆t the steps in time.
Let

xi = ih, i ∈ {0, 1, 2...N + 1} ,
c(xi) = a(xi),

tj = j∆t, j ∈ {0, 1, 2...M + 1} ,
f j
i = f(xi, tj),

we put

uj
i = u(xi, tj). (34)

Let

da(xi) =
c(xi+1)− c(xi)

h
, (35)

and

b(x) = − λ

xβ
. (36)

Therefore
∂tu+Au = f (37)
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is approximated by

−θ∆t

h2
c(xi)u

j+1
i−1 +

(

1 +
2θ∆t

h2
c(xi) + da(xi)

θ∆t

h
+ b(xi)θ∆t

)

uj+1
i

−(θ∆t

h2
c(xi) + da(xi)

θ∆t

h
)uj+1

i+1

=
(1− θ)∆t

h2
c(xi)u

j
i−1

+

(

1− (1− θ)∆t

h
da(xi)−

2 (1− θ)∆t

h2
c(xi)− (1− θ) b(xi)∆t

)

uj
i

+

(

(1− θ)∆t

h
da(xi) +

(1− θ)∆t

h2
c(xi)

)

uj
i+1 +∆t.[(1− θ) f j

i + θf j+1
i ]. (38)

Let us define

g1(xi) = −
θ∆t

h2
c(xi), (39)

g2(xi) = 1 +
2θ∆t

h2
c(xi) + da(xi)

θ∆t

h
+ b(xi)θ∆t, (40)

g3(xi) = −
θ∆t

h2
c(xi)− da(xi)

θ∆t

h
, (41)

k1(xi) =
(1− θ)∆t

h2
c(xi), (42)

k2(xi) = 1− (1− θ)∆t

h
da(xi)−

2 (1− θ)∆t

h2
c(xi)− (1− θ) b(xi)∆t, (43)

k3(xi) =
(1− θ)∆t

h
da(xi) +

(1− θ)∆t

h2
c(xi). (44)

Let uj =
(

uj
i

)

i∈{1,2,..N}
, finally we get

{ Duj+1 = Buj + Vj wher j ∈ {1, 2, ..M}
u0 = (u0(ih))i∈{1,2,..N} ,

(45)

where

D =





















g2(x1) g3(x1) 0 0
g1(x2) g2(x2) g3(x2) 0

0 g1(x3) g2(x3) g3(x3) 0
0 g1(x4) g2(x4) g3(x4) 0

0 . . . 0
. . . . 0

0 g1(xN−1) g2(xN−1) g3(xN−1)
0 0 g1(xN) g2(xN )




















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B =





















k2(x1) k3(x1) 0 0
k1(x2) k2(x2) k3(x2) 0

0 k1(x3) k2(x3) k3(x3) 0
0 k1(x4) k2(x4) k3(x4) 0

0 . . . 0
. . . . 0

0 k1(xN−1) k2(xN−1) k3(xN−1)
0 0 k1(xN) k2(xN)





















Vj =

























∆t.[(1− θ) f(x1, tj) + θf(x1, tj +∆t)]
∆t.[(1− θ) f(x2, tj) + θf(x2, tj +∆t)]

.

.

.

.
∆t.[(1− θ) f(xN−1, tj) + θf(xN−1, tj +∆t)]

∆t.[(1− θ) f(xN , tj) + θf(xN , tj +∆t)]

























Step 2. Discretization of the functional J

J(κ) =
1

2

∫ 1

0

(u(x, t = T )− uobs(x))
2dx. (46)

We recall that the method of Thomas Simpson to calculate an integral is

∫ b

a

f(x) dx ≃ h

2



f(x0) + 2

N+1

2
−1

∑

i=1

f(x2i) + 4

N+1

2
∑

i=1

f(x2i+1) + f(xN+1)





with x0 = a, xN+1 = b, xi = a+ ih, i ∈ {1..N + 1}.
Let the function

ϕ(x) = (u(x, T )− uobs(x))
2 ∀x ∈ Ω. (47)

We have

∫ 1

0

ϕ(x) dx ≃ h

2



ϕ(0) + 2

N+1

2
−1

∑

i=1

ϕ(x2i) + 4

N+1

2
∑

i=1

ϕ(x2i+1) + ϕ(1)



 .

Therefore

J(κ) ≃ h

4



ϕ(0) + 2

N+1

2
−1

∑

i=1

ϕ(x2i) + 4

N+1

2
∑

i=1

ϕ(x2i+1) + ϕ(1)



 .� (48)
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5. Genetic algorithme and Hybrid methode

The Genetic Algorithms (GA) are adaptive search and optimization methods
that are based on the genetic processes of biological organisms. Their princi-
ples have been first laid down by Holland. The aim of GA is to optimize a
problem-defined function, called the fitness function. To do this, GA maintain a
population of individuals (suitably represented candidate solutions) and evolve
this population over time. At each iteration, called generation, the new popula-
tion is created by the process of selecting individuals according to their level of
fitness in the problem domain and breeding them together using operators bor-
rowed from natural genetics, as, for instance, crossover and mutation. As the
population evolves, the individuals in general tend toward the optimal solution.
The basic structure of a GA is the following:

1. Initialize a population of individuals;
2. Evaluate each individual in the population;
3. while termination criterion not reached do
{
4. Select individuals for the next population;
5. Apply genetic operators (crossover, mutation) to produce new individuals;
6. Evaluate the new individuals;
}
7. return the best individual.

The hybrid methods combine principles from genetic algorithms and other opti-
mization methods. In this approach, we will combine the genetic algorithm with
method descent (steepest descent algorithm (FP)) as following:
We assume that we have a partial knowledge of background state kb at certain
points (xi)i∈I , I ⊂ {1, 2, .., N + 1}.
We assume the individual is a vector k, the population is a set of individuals.
The initialization of individual is as following

for i = 1 to N + 1
if i ∈ I
k(xi) is chosen in the vicinity of kb(xi)

else
k(xi) is chosen randomly

end if
end for

(49)

Starting by initial population, we apply genetic operators (crossover, mutation)
to produce a new population in which each individual is an initial point for the
descent method (FP). When a specific number of generations is reached without
improvement of the best individual, only the fittest individuals (e.g. the first 10%
fittest individuals in the population) survive. The remaining die and their place
is occupied by new individuals with new genetic ( 45% are chosen randomly,



Identification of a diffusion coefficient in degenerate/singular parabolic equations 153

the other 45% are chosen as (49)). At each generation we keep the best. The
algorithm ends when | J(k) |< µ or generation > Maxgen, where µ is a given
precision (see Figure 02).

The main steps for descent method (FP) at each iteration are:
- Calculate uj solution of (1) with coefficient kj

- Calculate P j solution of adjoint problem
- Calculate the descent direction dj = −∇J(kj)
- Find tj = argmin

t>0
J(kj + tdj)

- Update the variable kj+1 = kj + tjdj.

The algorithm ends when | J(kj) |< µ, where µ is a given small precision.

tj is chosen by the inaccurate linear search by Rule Armijo-Goldstein as follow-
ing:

let αi, β ∈ [0, 1[ and α > 0
if J(kj + αidj) 6 J(kj) + βαid

T
j dj

tj = αi and stop
if not
αi = ααi.

Figure 2. Hybrid Algorithm

6. Numerical experiments

In this section, we do three tests: In the first test, we recall the result obtained
by the algorithm of simple descent with ε = 10−5 (Figure 1), In the second test,
we turn only the genetic algorithm (Figure 2). Finally, in the third test, we
turn test with hybrid approach with parameters α = 1/3, β = 3/4, λ = −2/3,
N = M = 99, number of individuals = 40 , and number of generations = 2000.
In the figures below, the exact function is drawn in red and rebuild function in
blue.



154 K. Atifi, El-H. Essoufi, H. O. Sidi

Figure 3. Test with simple descent and ε = 10−5.

Figure 4. Test with genetic algorithm.

Figure 5. Test with hybrid algorithm.

These tests show that we can’t rebuild the coefficient in the diffusion k by the
descent method and genetic approach (Figure 3 and Figure 4), and the hybrid
approach proves effective to reconstruct this coefficient (Figure 5).

7. Conclusion

We have presented in this paper a new approach based on a hybrid genetic
algorithm for the determination of a coefficient in the diffusion term of some
degenerate /singular one-dimensional linear parabolic equation from final data
observations. Firstly, with the aim of showing that the minimization problem
and the direct problem are well-posed, we have proved that the solution’s be-
havior changes continuously with respect to the initial conditions. Secondly, we
have shown that the minimization problem has at least one minimum. Finally,
we proved the differentiability of the cost function, which gives the existence of
the gradient of this functional, that is computed using the adjoint state method.
Also we have presented some numerical experiments to show the performance
of this approach to construct the diffusion coefficient of a degenerate parabolic
problem.
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