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Abstract: For a given graph, let wk denote the number of its walks with k vertices and let λ1 denote the
spectral radius of its adjacency matrix. Nikiforov asked in [Linear Algebra Appl 418 (2006), 257–268] whether
it is true in a connected bipartite graph that λr

1 ≥
ws+r
ws

for every even s ≥ 2 and even r ≥ 2? We construct
here several infinite sequences of connected bipartite graphs with two main eigenvalues for which the ratio
ws+r
λr

1ws
is larger than 1 for every even s, r ≥ 2, and thus provide a negative answer to the above problem.
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1. Introduction

L et G = (V, E) be a simple, connected graph with n = |V| vertices. The spectrum of G consists of the
eigenvalues of its (0, 1)-adjacency matrix A, ordered as λ1 > λ2 ≥ · · · ≥ λn. Let x1, . . . , xn be an

orthonormal basis of eigenvectors of A, such that xi is an eigenvector of λi for i = 1, . . . , n. The adjacency
matrix A then has a spectral decomposition A = QΛQ>, where Λ = diag(λ1, . . . , λn) and Q = [x1 x2 . . . xn]

is the matrix with eigenvectors listed in columns.
As in Nikiforov [1], let wk denote the number of walks with k vertices, hence of length k− 1, in a graph G.

Since wk is the sum of entries of Ak−1, the spectral decomposition yields Ak−1 = QΛk−1Q>, so

wk =
n

∑
i=1

λk−1
i

(
n

∑
j=1

xi,j

)2

. (1)

Apparently, only those eigenvalues λi for which ∑n
j=1 xi,j is not zero affect the value of wk. Such

eigenvalues are called the main eigenvalues. The spectral radius λ1 of a connected graph is always a main
eigenvalue, due to its strictly positive eigenvector x1 [2]. Regular graphs, for which x1 is proportional to the
all-one vector j, have exactly one main eigenvalue, as all their other eigenvectors are orthogonal to j.

It follows from (1) that λ1 = limk→∞ 2k
√

w2k+1, as λ1 has the largest absolute value among the eigenvalues
of A by the Perron-Frobenius theorem [2]. Nikiforov proved in [1] that the inequality λr

1 ≥ ws+r/ws holds for
all odd s > 0 and all r > 0. He further showed that λr

1 can be smaller than ws+r/ws for even s and odd r on
the example of complete bipartite graphs, and then posed the following problem.

Problem 1 ([1]). Let G be a connected bipartite graph. Is it true that

λr
1 ≥

ws+r

ws

for every even s ≥ 2 and even r ≥ 2?

Several counterexamples have been found since the problem was posed. Nikiforov himself offered the
complete tripartite graph K2t,2t,t as a counterexample for s = r = 2. Elphick and Réti [3] produced an
infinite family of unicyclic graphs as counterexamples for s = r = 2 and further showed that the path P4
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is a counterexample for even s ≥ 2 and arbitrary r. One of the reviewers of [4] provided the following more
general result.

Theorem 1 ([4]). Let G be a connected graph with two main eigenvalues λ1 and λi, such that 0 > λi > −λ1. If s ≥ 2
and r ≥ 2 are even, then

λr
1 <

ws+r

ws
.

While Cvetković [5] posed the problem of characterizing graphs with a given number of main eigenvalues
already in 1978, the first results on graphs with two main eigenvalues started to appear only after a seminal
paper by Hagos [6] was published in 2002. Hagos showed that a graph has exactly k main eigenvalues if and
only if k is the maximum number such that j, Aj, . . . , Ak−1j are linearly independent. For k = 2 this means that
there exist α and β such that

A2j = αAj + βj, (2)

and that G is not regular. Graph G satisfying (2) is also called a 2-walk (α, β)-linear graph and its main
eigenvalues are [6, Corollary 2.5]

µ1, µ2 =
α±

√
α2 + 4β

2
. (3)

Various constructions of graphs with two main eigenvalues have been described in a number of papers [7–
14], and graphs satisfying the requirements of Theorem 1 can be found in most of these papers.

Our purpose here is to generalize a set of counterexamples presented in [4], which enables one to show
that the ratio ws+r

λr
1ws

can be significantly larger than 1. Since this cannot be shown by using main eigenvalues
and their eigenvectors only, we will resort to combinatorial counting of walks in such graphs.

Let us recall the definition of equitable partition of vertices. Let π = {π1, . . . , πk} be a partition of the
vertex set of a graph G, and for each v ∈ πi denote by d(j)

v the number of neighbors of v in πj. The partition π

is called equitable if for all i and j, the value d(j)
v has the same value, denote it by di→j, for all v ∈ πi. The quotient

matrix of such partition π is the matrix Qπ =
(
di→j).

Definition 1. For positive integers p, q and r, let Gp,q,r be the set of graphs which have an equitable vertex
partition with the quotient matrix

[ p q
r 0

]
.

We can now state the main results of the paper.

Theorem 2. Let G ∈ Gp,q,r and let A ∪ B be an equitable partition of G with the quotient matrix
[ p q

r 0

]
. Then for any

k ∈ N,

wk = |A|

b k−1
2 c

∑
l=0

(
k− l − 1

l

)
pk−2l−1qlrl +

b k
2c

∑
l=1

(
k− l − 1

l − 1

)
2pk−2lqlrl−1 +

b k+1
2 c

∑
l=2

(
k− l − 1

l − 2

)
pk−2l+1qlrl−2

 .

(4)

Let (Fn)n≥0 be the sequence of Fibonacci numbers and ϕ = (1 +
√

5)/2 be the golden ratio.

Theorem 3. In each of the following cases, there exists a separate sequence of connected bipartite graphs (Gp)p∈N such
that:

a) lim
p→∞

ws+r(Gp)

λr
1(Gp)ws(Gp)

=
s + r− 2

s− 2
, for even s ≥ 4 and even r ≥ 2;

b) lim
p→∞

ws+r(Gp)

λr
1(Gp)ws(Gp)

=
s + r

s
, for even s ≥ 2 and even r ≥ 2;

c) lim
p→∞

ws+r(Gp)

λr
1(Gp)ws(Gp)

=
s + r + 2

s + 2
, for even s ≥ 2 and even r ≥ 2;

d) lim
p→∞

ws+r(Gp)

λr
1(Gp)ws(Gp)

=
Fs+r

ϕrFs
, for even s ≥ 2 and even r ≥ 2;
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e) lim
p→∞

ws+r(Gp)

λr
1(Gp)ws(Gp)

=
Fs+r−2

ϕrFs−2
, for even s ≥ 4 and even r ≥ 2.

Theorem 2 is proved in Section 2, while the various parts of Theorem 3 are proved in Section 3.

2. Numbers of walks in graphs from Gp,q,r

Proof of Theorem 2. Let A ∪ B be an equitable partition of G with the quotient matrix Q =
[ p q

r 0

]
. Due to

Q2,2 = 0, from each vertex in B a walk can continue only to one of its r neighbors in A, while from each vertex
in A a walk can continue to either one of its p neighbors in A or one of its q neighbors in B.

We can now classify the k-walks in G according to the k-sequence of letters A, B indicating to which set
the vertices along a walk belong. For a given k-sequence of letters A and B, the number of the corresponding
k-walks can be determined by choosing the first vertex of a walk and then by considering pairs of successive
letters:

• each pair AA yields p choices for the second A after the vertex corresponding to the first A is chosen;
• each pair AB yields q choices for B after the vertex for A is chosen;
• each pair BA yields r choices for A after the vertex for B is chosen.

For example, the sequence BAABA encodes |B| · r · p · q · r = pqr2|B| walks with five vertices, while
AABAABA encodes |A| · p · q · r · p · q · r = p2q2r2|A| walks with seven vertices.

The fact that a feasible type sequence does not contain the pair BB means that each letter B may occupy
either a single position between any two consecutive letters A, or a single position prior to the first A or after
the last A. Since the number of walks with k vertices with a given letter sequence is influenced by the first and
the last letter of the sequence, we will count them separately, working out in detail the first possibility only.

Hence suppose that a given letter sequence starts and ends with the letter A and that it contains l letters B
(and consequently k − l letters A). There are k − l − 1 feasible positions for letters B between consecutive
letters A, so the number of such letter sequences is (k−l−1

l ). The initial letter A yields |A| choices for the initial
vertex of a k-walk. Each letter B appearing in the type sequence produces one pair AB and one pair BA,
which together yield qr choices for two corresponding vertices along a k-walk. This leaves a total of k− 1− 2l
pairs AA remaining in the type sequence, each of which yields p choices for the corresponding vertex in a
k-walk. Hence each letter sequence starting and ending with A corresponds to a total of pk−2l−1(qr)l |A| walks
with k vertices, and the number of k-walks corresponding to all such letter sequences is equal to

∑
l≥0

(
k− l − 1

l

)
pk−2l−1qlrl |A|.

Following the similar argument, we get that:

• the number of k-walks corresponding to letter sequences starting with A and ending with B is equal to

∑
l≥1

(
k− l − 1

l − 1

)
pk−2lqlrl−1|A|;

• the number of k-walks corresponding to letter sequences starting with B and ending with A is equal to

∑
l≥1

(
k− l − 1

l − 1

)
pk−2lql−1rl |B|;

• the number of k-walks corresponding to letter sequences starting and ending with B is equal to

∑
l≥2

(
k− l − 1

l − 2

)
pk−2l+1ql−1rl−1|B|.

Summing up these four cases we see that the total number of k-walks in G is:
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wk = ∑
l≥0

(
k− l − 1

l

)
pk−2l−1qlrl |A|+ ∑

l≥1

(
k− l − 1

l − 1

)
pk−2lql−1rl−1(q|A|+ r|B|)

+ ∑
l≥2

(
k− l − 1

l − 2

)
pk−2l+1ql−1rl−1|B|. (5)

Note that the number of edges with one vertex in A and another in B can be counted as both q|A| and
r|B|, which yields q|A| = r|B|, so (5) becomes:

wk = |A|
(

∑
l≥0

(
k− l − 1

l

)
pk−2l−1qlrl + ∑

l≥1

(
k− l − 1

l − 1

)
2pk−2lqlrl−1 + ∑

l≥2

(
k− l − 1

l − 2

)
pk−2l+1qlrl−2

)
.(6)

Upper limits for the three sums in (6) can be determined from the corresponding binomial coefficients:

• nonzero summands in the first sum are obtained for k− l − 1 ≥ l, i.e., for l ≤
⌊

k−1
2

⌋
;

• nonzero summands in the second sum are obtained for k− l − 1 ≥ l − 1, i.e., for l ≤
⌊

k
2

⌋
;

• nonzero summands in the third sum are obtained for k− l − 1 ≥ l − 2, i.e., for l ≤
⌊

k+1
2

⌋
.

Putting these upper limits in (6) yields (4).

3. Nikiforov’s ratio when q and r are powers of p

The key to proving various parts of Theorem 3 is to turn the expression for the number of walks wk into a
polynomial of a single variable by letting q and r to be the powers of p: q = pc and r = pd for some nonnegative
integers c and d. In such case we have

wk = |A|

b k−1
2 c

∑
l=0

(
k− l − 1

l

)
pk+(c+d−2)l−1 +

b k
2c

∑
l=1

(
k− l − 1

l − 1

)
2pk+(c+d−2)l−d

+
b k+1

2 c
∑
l=2

(
k− l − 1

l − 2

)
pk+(c+d−2)l+1−2d

 . (7)

In addition, the quotient matrix Q =
[ p q

r 0

]
determines a divisor of any graph G ∈ Gp,q,r. As graphs in

Gp,q,r are not regular when p + q 6= r, by [15, Theorem 3.9.9] any of them has two main eigenvalues that are
equal to the eigenvalues of Q:

λ1, λi =
p±

√
p2 + 4qr
2

=
p±

√
p2 + 4pc+d

2
. (8)

Now we can determine the limit of the Nikiforov’s ratio ws+r
λr

1ws
by discussing possible cases. Since the

Nikiforov’s problem assumes both s and r to be even, we will assume that k in (7) is even, i.e.,

k = 2k′,

in order to simplify discussion.

Case 1: c + d− 2 > 0. In this case

lim
p→∞

λ1

p(c+d)/2
= 1.

The highest exponents appearing in the three sums of (7) are

2k′ + (c + d− 2)(k′ − 1)− 1, 2k′ + (c + d− 2)k′ − d, 2k′ + (c + d− 2)k′ + 1− 2d,

respectively. We can now distinguish the following subcases.



Open J. Discret. Appl. Math. 2020, 3(1), 11-19 15

Subcase 1(a): c = 0, hence d > 2. In this case, the highest exponent in (7) is 2k′ + (c + d − 2)(k′ − 1) − 1,
appearing in the first sum for l = k′ − 1, and the corresponding coefficient is equal to(

2k′ − (k′ − 1)− 1
k′ − 1

)
= k′ =

k
2

.

Hence in this subcase

lim
p→∞

ws+r

λr
1ws

= lim
p→∞

ws+r

p(s+r)+(c+d−2)( s+r
2 −1)−1

pr(c+d)/2

λr
1

ps+(c+d−2)( s
2−1)−1

ws
=

s + r
2
· 1 · 2

s
=

s + r
s

.

There remains to construct a sequence (Gp)p≥1 of connected bipartite graphs with equitable partition
Ap ∪ Bp that corresponds to this case. The simplest choice is to let, for each p ≥ 1, the vertex set Ap to
consist of vertices {a0, . . . , apd−1} ∪ {a′0, . . . , a′pd−1} and the vertex set Bp to consist of vertices b and b′ only. The

subgraph induced by Ap should be p-regular, say by making the vertex ai adjacent to vertices a′i, . . . , a′i+p−1 for

i = 0, . . . , pd − 1, where addition is done modulo p, while the vertex b is adjacent to vertices in {a0, . . . , apd−1}
and the vertex b′ is adjacent to vertices in {b0, . . . , bpd−1}. Ap ∪ Bp is then an equitable vertex partition with

the quotient matrix
[

p 1
pd 0

]
, as requested, thus proving part b) of Theorem 3.

Subcase 1(b): c = 1, hence d > 1. In this case, the highest exponent in (7) is 2k′ + (c + d− 2)(k′ − 1)− 1 =

2k′ + (c + d− 2)k′ − d, appearing in the first sum for l = k′ − 1 and in the second sum for l = k′. Hence the
corresponding coefficient is equal to(

2k′ − (k′ − 1)− 1
k′ − 1

)
+

(
2k′ − k′ − 1

k′ − 1

)
= k′ + 1 =

k + 2
2

.

Then in this subcase

lim
p→∞

ws+r

λr
1ws

= lim
p→∞

ws+r

p(s+r)+(c+d−2)( s+r
2 −1)−1

pr(c+d)/2

λr
1

ps+(c+d−2)( s
2−1)−1

ws
=

s + r + 2
2

· 1 · 2
s + 2

=
s + r + 2

s + 2
.

There remains to construct a sequence (Gp)p≥1 of connected bipartite graphs with equitable partition
Ap ∪ Bp that corresponds to this case. The simplest choice is to let, for each p ≥ 1, the vertex set Ap to consist
of vertices {a1, . . . , apd} ∪ {a′1, . . . , a′pd} and the vertex set Bp to consist of vertices {b1, . . . , bp} ∪ {b′1, . . . , b′p}.
The subgraph induced by Ap should be p-regular, which can be done in the same way as in Subcase 1.a. The
subgraph induced by the vertices in {a1, . . . , apd} ∪ {b1, . . . , bp} should be isomorphic to the complete bipartite
graph Kpd ,p, as well as the subgraph induced by the vertices in {a′1, . . . , a′pd} ∪ {b′1, . . . , b′p}. Ap ∪ Bp is then an

equitable vertex partition with the quotient matrix
[ p p

pd 0

]
, as requested, thus proving part c) of Theorem 3.

Subcase 1(c): d = 0, hence c > 2. In this subcase, the highest exponent in (7) is 2k′ + (c + d− 2)k′ + 1− 2d,
appearing in the third sum for l = k′. The corresponding coefficient is equal to(

2k′ − k′ − 1
k′ − 2

)
= k′ − 1 =

k− 2
2

.

Hence

lim
p→∞

ws+r

λr
1ws

= lim
p→∞

ws+r

p(s+r)+(c+d−2) s+r
2 +1−2d

pr(c+d)/2

λr
1

ps+(c+d−2) s
2+1−2d

ws
=

s + r− 2
2

· 1 · 2
s− 2

=
s + r− 2

s− 2
.

There remains to construct a sequence (Gp)p≥1 of connected bipartite graphs with equitable partition
Ap ∪ Bp that corresponds to this case. The simplest choice is to let, for each p ≥ 1, Ap to be the vertex set
of a complete bipartite graph Kp,p, and then to attach q = pc pendant vertices to each vertex of Kp,p, with
these pc|A| pendant vertices forming the vertex set Bp. Ap ∪ Bp is then an equitable vertex partition with the

quotient matrix
[

p pc

1 0

]
, as requested, thus proving part a) of Theorem 3.
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Subcase 1(d): d = 1, hence c > 1. In this subcase, the highest exponent in (7) is 2k′ + (c + d − 2)k′ − d =

2k′ + (c + d− 2)k′ + 1− 2d, appearing in the second sum for l = k′ and in the third sum also for l = k′. The
corresponding coefficient is thus equal to(

2k′ − k′ − 1
k′ − 1

)
+

(
2k′ − k′ − 1

k′ − 2

)
= k′ =

k
2

.

Hence

lim
p→∞

ws+r

λr
1ws

= lim
p→∞

ws+r

p(s+r)+(c+d−2) s+r
2 +1−2d

pr(c+d)/2

λr
1

ps+(c+d−2) s
2+1−2d

ws
=

s + r
2
· 1 · 2

s
=

s + r
s

.

Constructing a sequence of connected, bipartite graphs corresponding to this subcase would yield another
proof of part b) of Theorem 3.

Subcase 1(e): c, d ≥ 2. In this subcase, the highest exponent in (7) is 2k′ + (c + d− 2)k′ − d, appearing in the
second sum for l = k′. The corresponding coefficient is equal to(

2k′ − k′ − 1
k′ − 1

)
= 1,

so

lim
p→∞

ws+r

λr
1ws

= lim
p→∞

ws+r

p(s+r)+(c+d−2) s+r
2 −d

pr(c+d)/2

λr
1

ps+(c+d−2) s
2−d

ws
= 1 · 1 · 1 = 1,

which is not helpful for the Nikiforov’s problem.

Case 2: c + d− 2 = 0, i.e., (c, d) ∈ {(0, 2), (1, 1), (2, 0)}. In this case

lim
p→∞

λ1

p
=

1 +
√

5
2

.

The highest exponents appearing in the three sums of (7) are

2k′ − 1, 2k′ − d, 2k′ + 1− 2d,

respectively. To calculate the corresponding coefficients in this case we will rely on the following summation
formula [16, Formula 1.61]:

b k
2c

∑
l=0

(
k− l

l

)
2k
( z

4

)l
=

xk+1 − yk+1

x− y
,

where x = 1 +
√

z + 1 and y = 1−
√

z + 1. In particular, for z = 4 we have x = 1 +
√

5 and y = 1−
√

5, so

b k
2c

∑
l=0

(
k− l

l

)
=

(1 +
√

5)k+1 − (1−
√

5)k+1

2k+1
√

5
=

ϕk+1 − ψk+1
√

5
= Fk+1,

where ϕ = x/2 = (1 +
√

5)/2, ψ = y/2 = (1−
√

5)/2 and (Fn)n≥0 is the usual Fibonacci sequence.

Subcase 2(a): (c, d) = (0, 2). The highest exponent is 2k′ − 1, appearing in the first sum for all values of
l = 0, . . . , k′ − 1. Hence the corresponding coefficient is equal to

k′−1

∑
l=0

(
2k′ − 1− l

l

)
= Fk,

so

lim
p→∞

ws+r

λr
1ws

= lim
p→∞

ws+r

ps+r−1
pr

λr
1

ps−1

ws
=

Fs+r

ϕrFs
.
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Since s and r are even and −ϕ < ψ < 0, we have that

Fs+r =
ϕs+r − ψs+r
√

5
>

ϕr(ϕs − ψs)√
5

= ϕrFs,

so the limit above is larger than 1, although it tends to 1 when s tends to infinity. There remains to construct
a sequence (Gp)p≥1 of connected bipartite graphs with equitable partition Ap ∪ Bp that corresponds to this
case. We can use the same construction as in Subcase 1(a), setting for each p ≥ 1 the vertex set Ap to consist of
vertices {a0, . . . , ap2−1} ∪ {a′0, . . . , a′p2−1} and the vertex set Bp to consist of vertices b and b′ only. The subgraph

induced by Ap should be p-regular, while the vertex b is adjacent to vertices in {a0, . . . , ap2−1} and the vertex b′

is adjacent to vertices in {b0, . . . , bp2−1}. Ap ∪ Bp is then an equitable vertex partition with the quotient matrix[
p 1
p2 0

]
, as requested, thus proving part d) of Theorem 3.

Subcase 2(b): (c, d) = (1, 1). The highest exponent is 2k′ − 1, appearing in all three sums for all values of l.
Hence the corresponding coefficient is equal to

k′−1

∑
l=0

(
2k′ − 1− l

l

)
+

k′

∑
l=1

(
2k′ − 1− l

l − 1

)
+

k′

∑
l=2

(
2k′ − 1− l

l − 2

)

=
k′−1

∑
l=0

(
2k′ − 1− l

l

)
+

k′−1

∑
l=0

(
2k′ − 2− l

l

)
+

k′−2

∑
l′=0

(
2k′ − 3− l

l

)
=F2k′ + F2k′−1 + F2k′−2 = 2Fk,

due to F2k′−1 + F2k′−2 = F2k′ . Thus

lim
p→∞

ws+r

λr
1ws

= lim
p→∞

ws+r

ps+r−1
pr

λr
1

ps−1

ws
=

Fs+r

ϕrFs
.

Constructing a sequence of connected bipartite graphs corresponding to this subcase would yield another
proof of part d) of Theorem 3.

Subcase 2(c): (c, d) = (2, 0). The highest exponent is 2k′ + 1, appearing in the third sum for all values of
l = 2, . . . , k′, with the corresponding coefficient equal to

k′

∑
l=2

(
2k′ − 1− l

l − 2

)
=

k′−2

∑
l′=0

(
2k′ − 3− l

l

)
= Fk−2.

Hence

lim
p→∞

ws+r

λr
1ws

= lim
p→∞

ws+r

ps+r+1
pr

λr
1

ps+1

ws
=

Fs+r−2

ϕrFs−2
.

There remains to construct a sequence (Gp)p≥1 of connected bipartite graphs with equitable partition
Ap ∪ Bp that corresponds to this case. We can use the same construction as in Subcase 1.c, setting for each
p ≥ 1, Ap to be the vertex set of a complete bipartite graph Kp,p, and then to attach q = p2 pendant vertices to
each vertex of Kp,p, with these p2|A| pendant vertices forming the vertex set Bp. Ap ∪ Bp is then an equitable

vertex partition with the quotient matrix
[

p p2

1 0

]
, as requested, thus proving part ) of Theorem 3.

Case 3: c + d− 2 < 0, i.e., (c, d) ∈ {(0, 0), (0, 1), (1, 0)}. In this case

lim
p→∞

λ1

p
= 1.

The highest exponents appearing in the three sums of (7) are

k− 1, k + c− 2, k + 2c− 3,
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respectively, obtained for the least feasible values of l. We can now distinguish the following subcases.

Subcase 3(a): c = 0. The highest exponent is k− 1, appearing in the first sum for l = 0. The corresponding
coefficient is (k−1

0 ) = 1, so

lim
p→∞

ws+r

λr
1ws

= lim
p→∞

ws+r

ps+r−1
pr

λr
1

ps−1

ws
= 1 · 1 · 1 = 1,

which is not helpful for the Nikiforov’s problem.

Subcase 3(b): c = 1, hence d = 0. The highest exponent is k − 1, appearing in the first sum for l = 0, the
second sum for l = 1 and the third sum for l = 2, so the corresponding coefficient is (k−1

0 ) + (k−2
0 ) + (k−3

0 ) = 3.
Hence

lim
p→∞

ws+r

λr
1ws

= lim
p→∞

ws+r

ps+r−1
pr

λr
1

ps−1

ws
= 3 · 1 · 1

3
= 1,

which again does not help with the Nikiforov’s problem.
This closes the discussion of cases when q and r are various powers of p. As a result, we see that it yields

five different limit values that are larger than 1 for the Nikiforov’s ratio ws+r
λr

1ws
for even s and even r. For each

of these limit values, one of many possible sequences of connected bipartite graphs that achieves the limit has
been constructed.
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