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Abstract

There are strong survival analysis methodologies for data sets which are complete, with accurate information
on censoring. But what if they are not complete? In an earlier paper we built a methodology for estimating
survival probabilities and hazard functions in a health setting, using breast cancer data from the Kurdistan
region of Iraq, for censored and uncensored data when a substantial portion of individuals are lost to the
study. In this paper we build on these models to consider further issues based upon the accuracy of the
records of patient death, where deaths often occur beyond the hospital in family settings and patients ceasing
treatment and contact with the hospital may or may not represent their death; thus the record of their time of
death may not be accurate. We develop a new Markov chain-based methodology for generating survival
curves and hazard functions, and demonstrate this using a different breast cancer dataset from the Kurdistan
region of Iraq.
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1 Introduction

Survival analysis is primarily concerned with modelling and analysing time-to-event data, with events generally
referred to as “failures.” Some examples are time until an electrical component fails, time to first recurrence of a
tumour (i.e., length of remission) after initial treatment [1].

It is possible that a “failure” time will not be observed due to deliberate design or random censoring. In this
study this would occur if a patient is still alive at the end of a clinical trial period or has moved away [2,3]. The
primary reason for developing specialized models and procedures for failure time data is the necessity of
obtaining methods of analysis that accommodate censoring. Survival analysis can then be thought of as a
collection of statistical procedures that accommodate time-to-event censored data. Previously, incomplete data
were treated as missing data and omitted. This loss of information introduced bias in estimated quantities. The
procedures discussed here avoid bias and are more powerful as they utilize the partial information available on a
subject or item [1]. Survival analysis is the study of the occurrence and timing of events. Covariates are studied
to determine their effect on survival duration. Censoring and time-dependent covariates (time-varying
explanatory variables) are central to survival analysis [4,5].

The survival function is the most well-known function in survival analysis; it describes the probability that an
individual survives up to time t. Related to this is the hazard function, which is the risk of death (per unit time)
[6,7]. If our individual has lifetime distribution T, following standard terminology (see Raza and Broom, 2016)
the survival function is

S(t) =1-F(t)=P{T >t}. ()]

The hazard rate or hazard function is
f(t
h(t) = _f® (2)
1-F(t)

i.e.

ht)dt=P{t<T <t+dt|T >t} (3)

=P {death in the interval (t, t+dt) given survival past time t}.

Integrating h (t),

[huydu=| #(“()u)du} log(1— F (u)) [,

= —log(L- F (t))=—log S (t),

which leads to the important expression

t
log S (t):—j h(u)du. (4)
0
Notice that F(+o0) = 1 (i.e., S(+00) =0) iff jh (U)du =0,
0
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Continuity will be assumed but concepts and formulae can be modified to include jumps in the density function
when it is important [8]. These fundamental properties can be estimated directly from data in a number of ways,
but perhaps the simplest and most robust is the Kaplan-Meier estimator, which estimates the hazard function,
using the discrete hazard function [9,10].

h =—L. (5)

Here d; is the number of observed deaths within a particular (unit) interval, and n; is the number of individuals at
risk at the start of that period. The survivor function is then estimated by

So=[Ta-h) ®)

This method automatically takes into account any data censoring, where an individual is known to leave the
study at a particular time; in Raza and Broom [8] we reduced the number at risk n by the number of censored
individual’s ¢;. Thus, the updated number at risk was as follows:

N =n;—d;—c;. (7)

A great advantage of this method is that reliable estimates can be obtained without making assumptions about
the underlying distribution of estimated times [11]. The only information that we need to apply this
methodology is, for all times where we take measurements, knowledge of the values of the total number of
individuals at risk at the start of the time period and the total number of deaths within the time period, i.e. all
values of n; and d;. This then enables robust comparisons between survival curves from different studies,
perhaps between different types of treatment, different times or different countries, and helps clinicians to assess
the effectiveness of different approaches. Significant censoring can be factored in as described above without
problems, provided that records are sufficiently good to know when contact with patients has been lost. In Raza
and Broom [8] we considered situations where we do not have this knowledge, and significant “hidden”
censoring occurs unknown to the researchers, using a real example as a case study (Nanakaly Hospital data).
There we presented two models, one without and one with censoring, which addressed this problem. In fact our
models, in particular the second model, do make parametric assumptions, based as they are on an underlying
Markov chain model. For details of these models see Figs. 5 and 6. Nevertheless the models, in particular the
simpler first model, were robust to (at least certain types of) deviation from such assumptions [12,13].

There are numerous studies on survival analysis in different countries, on various types of diseases. However,
there are hardly any survival analyses studies performed on breast cancer by Iraqi researchers in general and
researchers in the Kurdistan Region in particular. Due to the importance of this for both society and the
individuals [14,15], in this paper we look at the models described above (with and without censoring) based on
an updated structure applied to data from Hewa Hospital. This accounts for the missing reports on times of death
of a number of patients who did not return for their follow up appointments, a phenomenon which is indicative
of a larger problem with the patients’ reaction toward this particular diagnosis which may be due to poor health
education and general lack of awareness of the importance of keeping detailed and complete hospital records.
The reason may include a general fear of disease or death and the hope of receiving better treatment elsewhere.
Hospital record consistencies and general compliance appears to be correlated to economic status and doctor-
patient interaction, and also the apparent termination of a patient's follow up treatment may simply be due to bad
bookkeeping [16]. In particular it is clear that actual death records are almost entirely absent in the data that was
obtained. That is the basic problem leading to not having the real time of death.

Detailed times of death were provided, with censoring only at the end of the study period on 1st June 2014, see
Fig. 1 for an illustration. Analysing the above data using SPSS provided the Kaplan-Meier survival curve in Fig.
2. The function flattens out to effectively a horizontal line, indicating a hazard rate tending to zero. In particular,
Fig. 3 shows that the probability of death appears very small after 700 days as the curve flatters out around this
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time [17]. Since we see a small number of patients remaining for several thousand days, the data after this
period was removed after time 659 as in Fig. 3.
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Fig. 1. Ilustrative plot of survival times including end of period censoring (C), recorded death (RD) and
hidden censoring, individuals unknowingly lost to the study (L), for the Kurdish data from Hewa
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Fig. 2. Survival curve including censoring for the Kurdish data from Hewa hospital

The survival curve in Fig. 3 is clearly not realistic. For comparison, a survival curve for a set of breast cancer
data from Schumacher et al. [18] is shown in Fig. 4. The problem with the survival curve from Fig. 3 is that we
calculated it on the assumption that all individuals other than those who died (or were censored by reaching the
end of the study period) were still active in the study, but in fact individuals often did not return to the hospital
after initial treatment, and there are no clear records of when the deaths of these individuals occurred, or of
which individuals these were. Thus, there is some secret censoring that we do not have knowledge about. We
can think of this to mean that whilst the values of d; are accurate, the values of n; are not, and we are (after some
time, greatly) overestimating them. As in the Nanakaly data in Raza and Broom [8], the flatness of the curve is
likely because only a small number of patients remain in the study after this time. In summary, to find a good
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model for the Hewa Hospital data we began by plotting the survival curve using the Kaplan Meier method and it
shows that, the curve is not reliable when compared to the Kaplan Meier curve for the German data model.
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Fig. 3. Survival curve including censoring for the Kurdish data from Hewa hospital data for 700 days
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Fig. 4. Survival curve for the German data from Schmoor et al. (1996) and Schumacher et al. (1994).

2 Markov Model

2.1 Markov model without censoring for Hewa data

In general, the process of collecting data in the health sector or any other sector in a developing country such as
Iraq is not easy, because there is no accurate database system. The most dependable data are available in the
official records but not obtainable readily. One inevitably has to refer to numerous government agencies to
obtain relevant information from official sources such as the Ministry of Health, especially for information
regarding the time of death.

The Hewa data includes general information about the breast cancer patients, including their age, religion,

tumour size, tumour grade, lymph nodes, exercise, educational level, family history, breast feeding, smoking,
drinking alcohol, occupation, progesterone, estrogen, menopause, marital status and income. In addition there
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are three times involved in this data, time of admission, time of diagnosis and time of death. The time of
admission refers to the first time when the patient visits the hospital and the staff of the hospital administration
register general information about her. The diagnosis time means the time when the doctor diagnoses the patient
and refers them to the laboratory to make necessary required tests based on the symptoms that they are suffering
from. Finally, there is the actual time of death of the patient.

In initial analysis later in this study we use z as an intermediate measurement for the rate of real death (which is
not given) from the time of diagnosis. This serves to account for the missing reports on times of death of a
number of patients who did not return for the follow up appointments, leading to the hospital not having the real
time of death, which is reflected in the results of the survival curve when we applied the program at the first
step, because we used the time of admission instead of the time of death. Clearly there are differences between
the time of admission and the time of death, and this leads to significant problems with the analysis. That is why
we extend the analysis of the survival curve using a Markov process. This is the most natural and simple
extension to the model to try to deal with the absence of the actual time of death. Here when we applied the
Markov process we considered two modifications, one without censoring and one with censoring [19].

Nevertheless, there are some serious limitations to this model. For example, if individuals do not get censored at
constant rate, the censoring time will follow another distribution rather than an exponential distribution, which
arises from the Markov model, and we will obtain a different picture to that obtained from a Markov process.
Potentially more significant problems result from the lack of knowledge of the times of death. Deaths are
assumed to follow a Markov process from the time of diagnosis category and there are two main source of error.
Firstly, the rate (z) of this process is unknown and had to be estimated and we have thus considered a range of
values. Secondly, again this may not be a Markov process, which would also affect the shape of the survival
function.

We addressed this problem through estimating these numbers by constructing two new models, as described

above, each using Markov chains and estimating the number at risk N and deaths d . Fig. 5 represents the
original structure Markov survival model with no censoring.

Individual
l (1
/ \
Lost Recorded Death
(L) (RD)

Fig. 5. The Markov survival model without censoring for Nanakaly data

Consider a population of individuals in three categories; either at risk (1), died (RD) or who have left the study
(without our knowledge), which we shall call “lost” (L). Individuals simply move from state (1) to the other two
states at constant rates (1) to (L) and (p) to (RD). We thus have a population as described by Fig. 5. Denoting the

proportion of individuals in states (1), (L) and (RD) at time t by P, (t), P_(t)and Py, (t) respectively.

More generally we need to allow for observed censoring as well as hidden censoring within our model. Thus,
we now add an extra “censored” category (C) to our model, where individuals move from (I) to (C) at rate (q).
Importantly, individuals also move from the lost category (L) to (C) at the same rate (q). This is clearly
appropriate for our dataset, since the only overt censoring is due to the end of the study, and thus any individual
will reach this at the same time, whether in category (1) or (L). We thus then have a population as described by
Fig. 6. We note that for individuals censored because we know that they have dropped out of the study prior to
the end time, it would seem reasonable to assume that these and the “lost” individuals would be entirely
separate, and so that the transition rate g from state (L) to state (C) would be absent.
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Fig. 7 shows the first model for the Hewa data; here we have four stages, three of them are the same as for the
first model of the Nanakaly data plus on extra stage from recorded death (where we use the admission time as a
proxy for recorded death) to death (z). Here the same conditions and protocol will be required for the
continuous-time Markov chain as applies in the Nanakaly data Model I, but for the different sample space;

Q=[I,L,RD,D]

The difference between the time of admission (RD) and the time of death (D) occurs because when the patient
leaves the study, this may not indicate their death, but simply that they are possibly lost in the study or they have
not been followed up, as is shown in the transition stages in Fig. 6 with censoring. However, the term (D)
represents the patients that are actually dead in the study, as shown in Fig. 7 without censoring.

Individual
I
z (D
/ \ q
Lost Censored
p
(L) (€)
v A
Recorded Death
(RD)

q

Fig. 6. The Markov survival model with censoring for Nanakaly data

Individual ]
(1)
"/ \
Lost Recorded Death

(L) (RD)

1 :
Death
(D)

Fig. 7. The Markov survival model without censoring for Hewa data
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The state probabilities at time t, are represented by the following:
P=(R() RO Po® R().

They depend continuously on time with constant transition rate represented by:

o _dP _

== =P
a e

)

©)

for a given transition matrix Q = (0;,) , where 0 is the rate of flow from (i — S), which is a |P| * |P| matrix

of transition rates if it fulfils the following two conditions:

a) Q has no negative off-diagonal entries, i.e. (;, = 0 forall i =s.

b) Q has row sums equal to zero, or quis =0 forall i.

qll q12 e qls e an
qzl QZZ qZS q2n
Q=
qil in qis qin
qnl an qns qnn
The solution of (9) identifies the following equation for P:
P = pe”

subject to initial conditions P, (0) = P, . The transition rate matrix Q for Figure 7 is given by:

-(l+p) I p O
o-| 0 000
| o 0 -z z|
0 0 0 O
We then have
-(l+p) I p O
d d d d 0 000
—P({t) —P(t) —P,t) —P,(t)[=(P(t) P.(t) Po(t) Pyt
TR0 RO Pol) - D()) RO RO PO RO o, 2
0 0 0 0
d d d d
—PB () —P.(t) —Pgt) —P, (1) |=
(4RO SRO SR0 $RO]

(-1+PP® RN pRO)-zPp() 2P, (1).

(10)

11

(12)

13)
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The transition rate out of state | is the same as in Model | from Raza and Broom [8], i.e. as in equation (14),

% RO=0-(1+p)R{®)=PR 1) =ke " =e " 14)

Similarly the equation, initial condition and solution for (L) are identical to before, i.e.
P (t) - (L—e Py,
I+p

For state (RD) the flow in equals P P, (t) and flow out equals z Py, (t) .

% o) =pPP ({t)-zP ()=

% PRD (t) +1Z PRD (t) =p I:)| (t)

Multiplying both sides by the integrating factor e we get
d zt zt
(a Peo (D) +2Pp(1)e” = pPR (t)e” =
d Z Z
pras ‘P (1)) = PP (t)e”

=pete P = e P (t) =J'Pe‘z""’)tdt =

€ P (1) = ——— |p— S e kg, (15)

Dividing both sides of equation (15) by e’ we get the following equation 16.

P () =k, e ™+ ——F— |p_ 5 e o, (16)

To find the value of constant K, we use the fact that at time zero Py, (0) = O which leads to

PRD (t) = *[e—ﬂ _e—(|+ P)t]. (17)

As already mentioned, the transition rate from state (RD) to state (D) is (z), and so the flow into state (D) is
equal to Z Py, (t) and the flow out is equal to zero. Thus

d

at P, (t) =z Py (t) - 0. 18)
By substituting equation (17) into the above formula we get
i Py (t) = ZL[e*Zt —e Pt L If we let w = _ P and then integrate we obtain equation
dt l+p-z2 l+p-z2
(19) below:
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P (t) = —we ™ + 2 gt g (19)
I+p

When t =0 = P, (0) = Othen we obtain

@-e ™M) (20)

P, (1) =$[a—e-“>— | j 5

Table 1 shows a summary of the above solutions:

Table 1. Summary of all state transitions for model | Hewa data

State Inflow Outflow Equations for state probabilities Probability values

Y RO Shm=o-armre  RO=e"

- RO O %PL ®=1P,(t)—0 P.(t) =ﬁ(1—e<'+p>t)

RD PRE)  ZPp(t) %PRD(t) = pP(1)- Zﬁ(e'” —e N P () = ﬁ[e—zt _e ey
D Pp(t) O % P=7 S— et -0 B :ﬁ[a—e*‘)—ﬁa—ef“*”

The results in Table 1 are helpful in setting up the second Hewa model (now including censoring), but these
should be applied using the same mathematical formalism as for the first model (which does not account for
censoring).

We can derive, from the Markov process (see Fig. 7), estimates of the number of individuals moving from state
(1) to (RD) and then (D). In the calculation below we shall use the following terms:

~

dt is the estimated number of real deaths, while d; is the number of recorded deaths, and x; is the probability of
death of an individual in the (RD) category, all within the t th time interval starting at T, and ending at T.;.

In time interval T, to T4, d; individuals move from (1) to (RD) to (D). Here, recorded death (RD) is the
transaction from individuals (I) to recorded death (RD) at rate p; recall that this does not mean that all of the
individuals are dead, but some of them may be lost to the study. However, death (D) means that the individuals
really have died, and this is assumed to happen at the start of the interval. Individuals in the record death
category (RD) can then move to death (D) by rate z, at the start of the subsequent time interval, which they do
with probability x; . Thus the number of individuals remaining in state (RD) at the end of the time interval is

t i-1
Zdi H(l— X; ) and, so to estimate the number of deaths for Hewa patients, the following equation is used:
i=L =i

GTt+1:th‘,dil_[(l_xj) ) (21)
i-1 j=i
where
al =0, a2 =xd, , d3 =X,d, +Xx,(1—x,)d, (22)
and
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X =1-exp(=z(T, —T))).

We can write this as a recurrence relation in dt following equation (21) as follows:

1_Xt—1d]
-

-1

dt+1 = Xt[dt +

(23)

(24)

The number of individuals dying in the t th period is the sum of all the probabilities of the death of individuals
whose deaths were recorded before this. To estimate the number at risk (N,,;) we use a similar method to the

first model in Raza and Broom [8], and so need the value of O as in the following equation:

0= o
nr + t
t=0
The equation of the total number of patients N_ is
n n.
n=N,+)>d — .
t=0 t=0
where, N, is the number of individuals remaining in the study.
Thus,
n,, =0 ——-¢C.,
t+1 t 6 t

(25)

(26)

(27)

(28)

(29)

(30)

Recall that due to only a small number of events occurring later in the study, we cut off the data at time 659 just

after one of the death events thus letting 7 =659 n_=569.639 and Z d, =137 . Using z =0.005 we

t=0

obtain > d, =127.361 and 6=0.182.

t=0
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2.2 Markov model with censoring for Hewa data

The second Markov Chain structure model for the Hewa data is represented in Fig. 8 below:

Individual ]
(D )
/ / \ q
Lost Censored
(L) P C)
v
Recorded Death *
(RD)
|,
Death
(D)
q

Fig. 8. The Markov survival model with censoring

The probabilities at time t of being in state (I, L,C, RD and D) respectively are represented by the following
vector:

P=(R®) RO RO Po® R®) (@)

The transition rate matrix Q is given by

—(I+a+p) l q P 0
0 —q q 0 0
Q= 0 0 0 0 0 (32)
0 0 0 -z z
0 0 0 0 0

The derivatives from equation (9) are represented by:
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-(+g+p) | g p 0
0 - q 0 0
G%@)Epm 9P(t) 9P0)9P0)4Pm PO P Pol) RO) 0 0 0 0 Y
dtl dtL dtc dt RD dID | L C RD D
0 0 0 -1 1
0 0 0 0 0
d d d d d
—PR({t) —P () —P.(t) —Pyt) —P()|=
(Lr0 SRO SRO SR0 SRO)

—(I+g+p)R® IRO-qP® qRO+R{M) pR{O-zP({) zF(1) (33

The transition rates out of the | state are the same as in the second model for the Nanakaly data, for more detail
see Raza and Broom [8], but for the Hewa model we add the rate of transition from state (I) to state (RD) (as
opposed to state D) given by (p). Thus the equation, initial condition and probability for state (1) are the same as
before, i.e.

P (t)=e """ (34)

Similarly, the equation, initial condition and probability for states (L) and (C) are identical to in the previous
model so

RO = e ), (39)

Pc(t)=—|Jrq (1—e*"”’“‘)‘)—e"“—I @-e P, (36)
I+ p+q I+p

For the state (RD) the flow in equals p P, (t) and the flow out is Z Py (t) . Thus

P = PP~ 2Pyp 1) @37)

% Peo () + 2 Pep (1) = PR (D). (38)

Thus as in the previous Hewa model (see equation 19) we get

%(en Pro (1) = e” % Pro (t)+ Pro (t) ze® = pPR (t)ezt — pezt g (Farmt _y

2t _ (z-1-g-p)t 44 _ p (z-1-g—p)t
e PRD(t)—Jpe a-p dt_z_l_—q_pe a-p +k5. (39)

To find the value of the constant K we consider time zero, so that

P o=k P
z-l-q-p

K f=———————
l+9+p-z

(40)

5

and substituting equation (39) into equation (40) we get equation (41),
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PRD (t) = ﬁ[e—Zt _ e—(l+q+ P)t]. (41)

Now the last transition from state (RD) to state (D) has rate (z). The value of the flow in is equal to Z Py ()
and the flow out is equal to zero. Thus

d

E(PD) =zP,,—-0. (42)
By substituting equation (41) into the above formula we get
4 Py (t) = Z#[e’Zt —e P if we let w= S , and then integrate here we
dt l+q+p-z l+q+p-z

obtain equation (43) below:

P (t) = —we ™ + 2 gt (43)
l+q+p
When t =0 then P, (0) =0 and thus
@ —w-— 2 (42)
l+q+p
Substituting equation (44) into equation (43) we get
_ p -1zt z —(l+g+p)t
PRt)=—"——[1-e")——(1-e )] (45)
l+q+p-z (I+q+p)

Table 2 is a summary of all the above solutions.

Table 2. Summary of all state transitions for model Il Hewa data

State Inflow Outflow Equations for state probabilities Probability values
I 0 (+p+gh® d P (t) = e (+P)t
SRO=0-(+p+gr T
L IP () O d __ g aaee
! G O=1R®-0 PO =15 @e ™™
c qp () 0 d I e g e
' LR =aR®-0 ST
RD p I:>| (t) z PRD (t) EPRD(I): PP (1) -2 p (efzt _ef(l+q+p)t) Peo () = P [e—zt _e—(l+q+p)t]
dt [+q+p-2 l+q+p-z
D z PRD(t) 0 E PD(t) — p (e—zt _e—(l+q+p)t) _0 PD(I) _ p [(1_e—zt)_ z (1_ef(l+q+p)t)]

71— =
l+q+p-2 l+q+p-1° (+g+p)

Using equations (34) and (41) we can estimate the second model for the Hewa data to determine the survival
curve in the Hospital. We consider the estimated hazard function h_(t) , represented below:
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" _ z PRD (t)
0= 0RO (40)

This is z times the ratio of the rate of deaths in the population among the at risk individuals (in categories RD
and I) and the number of at risk individuals.

Firstly we use the real hazard, function to find the real survival function as shown below:

p —zt —(l+p+a)t
I—|¢e " —¢
RD(t) _ |+p+q—Z|: } (47)

Po®+R (1) P [e7 —g trpan g trpon
l+p+g-z2

h(t) =

7 pl:e(l+p+q—z)t _1]

- I +q — Z + pe(|+p+q_z)t ’ (48)
The real survival function is then given by:
R —jhc(u)du
S.(t)y=e °
where, using equation (48),
t t (I+p+g-2)
zZple -1
J.hc (u)du _[ p[ (I+p+ ]z)u
0 ol+q—z+pe™ P
LettingV =" we have
dv _
—=(+p+q-z)elra
u
t e(l+p+a-2)t
1
[hudu=| zpv-1] 1 dv. (49)
) T (+g—z+pVv)V((+p+q—2)
Using partial fractions we obtain
E(HT’M zplv-1] dve A 1 -zp_ (+p+a-2zp |
1 (+g-z+pv)v(l+p+g-2) 1 l+p+a-z|[(+g-2)v (+qg-2)(I+g-z+pv)
s {—(I+p+q—z)t+(l+p+q_z)(ln(l+q 74 pe ™) In(l+q-z+ p))}
(I+p+a-2)(I+q-2) P

To simplify the above equationweset h =1+ p+g—2z and w=e!*P*"" This gives
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Ihc(u)du =h(;—_pp){— ht+%(ln (h—p+ pw)—In h)} _

~ % pt+—2 [In(h—p+pw)—Inh] =

h—p h—p

—jh(u)du— L pt+—2 [m h } (50)
u h—p h—p| h—p+pw

Using equation (50) the real survival function §C (t) then takes the following form:

$ ) =exp| In pel P oDy pq—z a2 | | (I+p+q-z)e™ |+ 51)
‘ (I+p+q-2)e” pel Pt |1 q—z '

We denote I/p, the ratio of probabilities for an individual to be lost to the study or die, respectively, by «, to
account for the right censoring in this population caused by the end of the study period. We can use the number
of recorded deaths to estimate the number of lost individuals provided we can estimate a =I/p.

3 Estimating the p,«,1, q and z Values

At low t, the survival probability satisfies S(t) =e ™ so that S(0)/S(t) =™, so we estimate the rate of
recorded death p using the following equation

SEPRIC)
p—tln(s(t))- (52)

We tested different values of time t for equation (52). In principle the lower the t value, the better (q ), assuming

that there are enough events for a reliable estimate. For very small t, there is little data to use to estimate the
value of p. There was sufficient data at time t =10, where there had been 29 recorded deaths. Here

S(t =10) =0.9790and so we obtain the following estimate of p,

p=—In (—
10" 10.9790

)=0.00212

To estimate @ we apply the same methods as in Raza and Broom [8] and using equation 53:

-pt\l+a
a+(e™"™) . S(e0) = a

S(t) =

1+ . (53)

where S (o0) is the limiting apparent survival probability for the data. In practice, in contrast to Raza and Broom
[8], a small number of individuals remained in the study indefinitely, and so we had to choose a practical cut-off
value. We selected the value associated with time t=750, which led to an estimated value of &z = 7.07029.
We selected this value because it was close to the equivalent cut off value from Fig. 3 and it gives us an

estimated survival curve very close to the survival curve from the real data except for when there are few
individuals left in the study. We see this in Figs. 9 and 10.
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Fig. 9. Kaplan Meier method for apparent and estimated survival functions at time 3715 days
(-) is adjusted with cut off up to 750 days, (0) is Real data and (-0) is adjusted without cut off.
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Fig. 10. Kaplan Meier method for apparent and estimated survival function at up tp time 750 days
(-) is adjusted with cut off up to 750 days, (0) is Real data and (-0) is adjusted without cut off.

To find the rate of loss of individuals, denoted by |, we use the definition of « ,
azl— = | =a p. Thus we have | =0.01499 .
P

The rate of censoring individuals (] at time t can be estimated using the equation below.

P(t)= _+a (1—exp (+Proty g dt b (=g Py,
I+ p+q |+ p
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where P, (t) is the proportion of censored individuals at time t .

After testing different value of t we conclude that a small value of t has not enough censored individuals for
reliable prediction. In practice censoring here is not a homogeneous Markov process (as implicit in the model);
note for the models in Raza and Broom [8] we saw that this was not important for that model, but here it is. A
large number of censored individuals between t=700 to t=750 also made these values unreliable. A sensible

choice is t = 1000 because the variations in § are larger below t= 1000. Then the estimated  value is
§ =0.00160. The discussion above is illustrated by Table 3.

Table 3. The estimated rate of censored individuals ( 4 ) at different time (t)

t 200 500 700 750 875 1000 2000
§g 0.00093 0.00078 0.00085 0.00211 0.00182 0.00160 0.00159

4 Applying Our Models to the Kurdish Data

4.1 Without censoring

From the Hewa data, the value obtained for S() (the limiting value of the survival curve) is 0.87607, which
gives an estimate of a = 7.07029 individuals lost per death event. Our method applied without censoring then
gives the adjusted Kaplan-Meier survival curve in Fig. 11. This figure says that the probability of surviving up
to 50 days is 0.990 and up to 100 days is 0.971, during these periods (i.e. up to 100 days) there were 113 death
and 51 censored patients. Up to 700 days, there is a probability of survival 0.707, where an additional 20
patients died and 383 patients were censored, supposing that z =0.005.

Cum. Survival

T T T
a 200 400 s00

Survival Time
Fig. 11. Adjusted survival curve for the Hewa data using the method without censoring (z=0.005)

Since z depends upon an intuitive estimate using little evidence, we considered z to be 10 times bigger and 10
times smaller than 0.005. As above, we took the times of death to be given by the Markov process starting at the
time of diagnosis which we discussed in Section 2.2. Fig. 12 is the equivalent survival curve when z =0.05,
which shows a different shape of survival curve for the same period compared to Fig. 10. For the first period of
50 days the survival probability is 0.941 and for the second period up to 100 days it is 0.889, while for the
period up to 700 days the probability is 0.744.
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Fig. 12. Adjusted survival curve for the Hewa data using the method without censoring (z=0.05)

Fig. 13, the survival curve when z=0.005, shows different survival probabilities again for the same period
respectively. For up to 50 and up to 100 days the survival probabilities are 0.999 and 0.997 respectively, while
the survival probability up to 700 days is 0.929.
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Fig. 13. Adjusted survival curve for the Hewa data using the method without censoring (z=0.0005)

4.2 With censoring

For the survival curve for the with censoring model we again need to estimate is z. For this case we use the
previous z value of the first model without censoring, which was chosen to be equal to 0.005. We see this in Fig.
14,
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Fig. 14. Adjusted survival curve for the Hewa data using the method with censoring (z=0.005)

Figs. 15 and 16 show the equivalent figures using z equal to 0.05 and 0.0005 in the same way as for the previous
model.
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Fig. 15. Adjusted survival curve for the Hewa data using the method with censoring (z =0.05)
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Fig. 16. Adjusted survival curve for the Hewa data using the method with censoring ( z=0.0005)
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For the second model we used the Markov Chain to estimate the rate of recorded deaths, the rate of censoring,
the rate of losing individuals and the rate of death (p,q,| and Z)..The survival curves arising from the two

models are considerably different (Figs. 11 and 14), partly because of non-homogeneous censoring in the data.
Observe that while the survival curve corresponding to z = 0.005 appears to be approaching zero, setting z =
0.05 yields a curve decreasing more slowly. Finally, for z = 0.0005, we obtain an even slower drop of the
survival function, which does not appear to be approaching zero in the observed timeframe, casting doubt on the
reliability of this estimate.

5 Discussion

In this paper we considered the modelling of survival data when crucial information is missing. Indeed, in the
scenarios we consider, towards the end of the study missing data constitutes the vast majority of the dataset,
making accurate estimation very challenging. The models in this paper are built on those from our earlier work,
Raza and Broom [8], which considered how to deal with a specific type of missing data in a health setting,
where individuals leave a medical study without notifying the hospital concerned. For the new model there is an
additional problem of missing data, caused by uncertainty about the time of death compared to (what could be
taken as) the recorded time of death. The original and new works are both based upon a set of breast cancer data
from a hospital in the Kurdistan region of Iraq, Nanakaly and Hewa hospitals, respectively.

Here for the Hewa dataset there were thus two problems with the data, the problem of “lost” individuals, but
also the problem of the absence of definitive times of death. We developed two models that tried to overcome
these issues. We generated a new Markov chain model for two distinct cases, for data with and without
censoring. For the first of our two models, the without censoring case, we estimate the number of observation

and the number of deaths in a natural way. Here we adjusted the true number of individuals at risk ﬁt and the
estimated number of deaths dt , which depends upon the rate of transition from the Recorded Death class to the

Death class (z). The estimated hazard rate was then adjusted from that using the original data dt / n, to Jt / ﬁt .
As mentioned in the previous paper for the Nanakaly data there is a consistent scaling which preserves the order
of the risk factors, though not in quite as straightforward a manner, as (It is a weighting of the number of
recorded deaths from different time periods.

However, for the second model, with censoring, we need to estimate crucial parameter values, and for
appropriately chosen estimates we get realistic survival function curves. However, estimates are made with little
information. Thus, while our survival curves are plausible, we cannot rely on them. Here we used the Markov
Chain to estimate the rate of recorded death, the rate of censoring, the rate of losing individuals and the rate of
death (p, g, | and z) in our model. Further, we saw that the survival curves arising from the two models were
considerably different (see Figs. 9 and 11), partly at least as a consequence of the non-homogeneous censoring
in the data. Thus, the conclusions from our analysis of the risk factors in the Hewa data are not robust. We
believe that it is not possible to obtain such robust conclusions from the current data. In such circumstances our
predictions would not be reliable. Similarly, if different groups of individuals have different rates with different
I/p ratios, this might also affect the results. We claim, however, that in circumstances where the problems
outlined occur, our model is a good first step, and a considerable improvement on making no adjustment.

This leads on to the question, how prevalent will the problems that we have described be? With sufficiently
accurate records and follow-up of individuals they will not occur, and of course a better solution than applying
our methods is to have these processes in place. Nevertheless, in reality they often will not be. This is
particularly the case in regions with a history of upheaval and developing medical services. It can be argued that
these are precisely the regions which most need accurate survival models and so the application of our methods
can be of significant value.

The problems stem from an incomplete database due to various reasons based on what the Region has gone
through in the past. The Region separated from the central Government in 1991 causing an internal conflict
after that era. Every sector has been affected by this abnormal environment including the health sector. In
comparison to various other diseases, the rate of breast cancer among women in the Region has risen
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dramatically. This is why we chose this disease to study in Kurdish society. The research involves the
application of survival analysis in order to find new tools and ways to illustrate the importance of knowing the
survival rate. When we first started collecting the data, we found that some data was missing which may be due
to either those recording the data not realising the importance of the details or the patients not returning to the
hospitals for a follow-up check. We have therefore made some adjustments to the data by proposing the use of a
new model developed using mathematical methods.

The best way to collect data that we can depend on is the use electronic health records (EHR) as recognized by
the Academy of Medical Royal Colleges in 2008 (https://www.aomrc.org.uk/publications/)
statements/doc_view/217-academy-statement-the-case-and-vision-for-patient-focusedrecords.html). The most
important thing we must look at is the list of clinical record headers, each with a description of what should be
logged under each header. In addition to the clinical categories, the full set of record headers should include
admission, handover, discharge, outpatient, referrals, communications, and space for special remarks. The
recorded data in the Kurdish hospital Hewa did not meet these standards (HSCIC, 2013).

The specific subject of our data, breast cancer, is the most common type of cancer in women in both developed
and developing countries. The incidence of breast cancer is increasing in developing countries due to increased
life expectancy, increased urbanization and wider adoption of western lifestyles. Although some risk reduction
might be achieved with prevention, these strategies cannot eliminate the majority of breast cancers that develop
especially in low and middle-income countries where breast cancer is diagnosed in very late stages [20]. Early
detection is therefore required to improve the outcome of breast cancer and remains the cornerstone of breast
cancer control.

The World Health Organization promotes breast cancer control within the context of national cancer control
programs integrated with non-communicable disease control and prevention. In order to make efficient use of
the medical equipment and trained staff available, the WHO has adopted a programme heavily focusing on early
detection and prevention [21]. Given the relative underdevelopment of medical infrastructure across the region
and the consequent difficulty of arranging regular check-ups, it is crucial to educate the female population on
early signs of breast cancer as well as the associated risks [22].

Mortality rates related to breast cancer around the Eastern Mediterranean are steadily increasing even as the
overall incidence is lower than across the developed world. One explanation proffered by Mahdi et al. [23] is
that many cases of breast cancer appear to be diagnosed at an advanced stage of the disease, complicating
treatment independent of the medical resources available. A useful case study is presented by Irag. In the decade
from 2009 to 2019, the incidence of breast cancer almost doubled from 9.5/100,000 to 18.2/100,000, making it
the leading tumour diagnosis as well as the second most lethal cancer in Iraq [24]. Recent data suggests that in
addition to rising incidence rates, breast cancer in Iraqi women is diagnosed at later stages and younger ages
when measured against the corresponding figures from western countries [25,26]. This combination of trends
makes the reported mortality rate one of the highest in the world, according to recent comparative literature [20].

As a result of war, internal displacement, and the chaos and disorder associated with civil strife over the last 40
years, the Iraqi healthcare sector has not been able to develop at rates comparable to other countries of the
region. While some government initiatives have been launched in an attempt to reverse the tide and improve
certain key indicators [25], health outcomes have broadly deteriorated [27,28].

The breast cancer early detection (BCED) programme was evaluated over nine years in a study of a total of 360
patients at the Medical City Teaching Hospital and the national cancer research center (INCRC) in Baghdad.
During the studied period, the proportion of women presenting with stage IV cancer significantly fell from
15.2% in the first year to 9.1% at the end of the study [29]. At the same time, the proportion of advanced stage
(I1'and 1V) diagnoses remains alarmingly high.

We note that the awareness and knowledge of breast cancer risks and detection techniques among Iragi women
was the focus of a study carried out in the Kurdistan Region of Northern Iraq. The convenience sampling
technique (CST) was used to select 400 female Kurdish patients presenting at either the maternity teaching
hospital in Erbil or one of the primary healthcare centres (PHCs). At first glance, the results of the study were
encouraging; for instance over half of the surveyed population reported some knowledge of mammography, and
almost 90% were aware of the beneficial effects of early detection on prognosis. However, some misconceptions
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remain relatively widespread; roughly a third assumed breast cancer to be altogether preventable. Furthermore,
the level of accurate knowledge of breast cancer risks and early detection techniques correlated heavily with
socioeconomic status, suggesting the necessity of further outreach programs targeting poorer and less literate
communities [30].

In summary, the treatment of breast cancer in the region presents particular challenges compounded by the lack
of accurate data and is an appropriate area to apply our methodology. However, while of course the supply of
such data is the preferable solution, we believe that our methods are of potential value in many cases where
there are significant problems with the accuracy and availability of data.

6 Conclusion

All over the world, especially in the developing regions, the rates of breast cancer, the most common
malignancy in women, constituting just under one fifth of cancers in females, are on the rise. Kurdistan-Iraq is
no exception, with an age-adjusted incidence rate of 68.9 per 100,000 per year; in fact, breast cancer is the most
prevalent cancer among the population (affecting about one third of female cancer patients), with particularly
alarming rates among the younger demographic, according to the Kurdistan-Iragi Cancer Registry. In order to
tackle this problem, a precise understanding of the survival rate is essential. In order to do so, in this work we
adopt the Cox regression and Kaplan-Meier methods.

The main conclusion is that we have developed a new method for performing a survival analysis on a set of data
where there are important unknown factors. In particular, we have shown how to adjust a Kaplan-Meier analysis
to find a survival curve in such circumstances, and also shown how to estimate a true hazard (survivor) function
from the biased one obtained directly from the data. Using data from Hewa hospital we generated a new model
in two cases; with and without censoring. For these models we need to estimate the number of deaths and also
crucial parameter values. For some parameter estimates we get realistic survival function curves. However,
estimates are made with little information. Thus, while survival curves are plausible we cannot rely on them.
These models are nonetheless a significant improvement on trying to estimate survival curves without them.
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