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Abstract 
In metabolic network modelling, the accuracy of kinetic parameters has become more important 
over the last two decades. Even a small perturbation in kinetic parameters may cause major 
changes in a model’s response. The focus of this study is to identify the kinetic parameters, using 
two distinct approaches: firstly, a One-at-a-Time Sensitivity Measure, performed on 185 kinetic 
parameters, which represent glycolysis, pentose phosphate, TCA cycle, gluconeogenesis, glycox-
ylate pathways, and acetate formation. Time profiles for sensitivity indices were calculated for 
each parameter. Seven kinetic parameters were found to be highly affected in the model response; 
secondly, particle swarm optimization was applied for kinetic parameter identification of a meta-
bolic network model. The simulation results proved the effectiveness of the proposed method. 
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1. Introduction 
A major advance in metabolic engineering is possible by understanding the dynamic behavior of a living cell 
and decreasing or increasing the production of metabolites [1]-[3]. Several key examples demonstrate this. A 
powerful tool for explaining the properties of the metabolic engineering system can be found in the experiments 
of the Metabolic Network Model [4]. Kinetic Metabolic Network modelling requires a large number of kinetic 
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parameters. These parameters have been studied and analyzed to detect the concentration of changes in the me-
tabolites and reactions, using a differential algebraic equation [5]. Every physiological system has a set of para-
meters such as temperature, reaction rates, and kinetic constants. So, to extract the parameters from experimental 
data in parameter optimization is generally difficult. Hence, the parameters tend to be estimated or measured in 
different conditions. Therefore, the Least Squares technique and Real-Coded Genetic Algorithm are used to fit 
the model output to the corresponding experimental measurements applied by [5]. This study focuses on large- 
scale kinetic parameters, which use a non-linear ODE to estimate kinetic parameters [6]. Since 2002, Sensitivity 
Analysis and Parameter Optimization have used less than three pathways in their kinetics modeling. In [7], the 
model of glycolysis and pentose phosphate pathways was investigated by applying a Stepwise Internalization 
method for the Sensitivity Analysis, and Simulating Annealing was used to optimize 85 kinetics that represent 
his model. In [8], twelve kinetic parameters were identified as effective parameters for the Embden-Meyerhof 
pathway, pentose phosphate pathway, and phosphortransferase system; they used the Monte Carlo simulation 
and Sobol method for calculating the times profiles. Nine of the most sensitive kinetic parameters were opti-
mized through the Control Vector Parameterization Approach to formulate Dynamic Parameter Estimation 
problems [8]. They also apply Sensitivity Analysis to 100 kinetics by scaling each kinetic parameter individually. 
Seven kinetic parameters were identified as the most significant ones, considering Vmax as a kinetic target. Real- 
Coded Genetic Algorithm was used for optimization [5]. Particle swarm optimization (PSO) is a relatively new 
family of algorithms which may be used to find out the optimal solutions to the high complexity or multi-   
dimensional functions [9]. The algorithm of PSO emulates the behavior of animal societies that don’t have any 
leader in their group or swarm, such as bird flocking and fish schooling [10]. Moreover, the PSO algorithm con-
tains many different mechanisms that improve global and local exploration abilities [11]. It was also reported 
that PSO algorithm was sufficient to reduce the steady-state errors [12]. 

In this work, the model in [6] is used as a study case. The model consists of glycolysis, pentose phosphate, 
TCA cycle, gluconeogenesis, glycoxylate pathways, phosphotransferase system and acetate formation. The Sen-
sitivity Analysis in large-scale kinetic parameters was used to select the effective parameters that reveal signifi-
cant changes among metabolites and fluxes on the model output. On the other hand, PSO was used to optimize 
the identification of the most effective parameters of the model. The simulation result proved that only seven 
kinetics were highly affected in the model. Also, it proved that the proposed optimizing method—the PSO algo-
rithm—was highly effective in estimating the unknown parameters. 

2. Proposed Method 
This paper comprises three parts. The first part presents a brief description of the model structure; the second 
part shows the application of the local Sensitivity Analysis technique; and the last part covers the application of 
the Global Optimization Algorithm. 

2.1. Metabolic Network of E. coli 
The main metabolic pathway of E. coli formulated by reference [6] was treated as a benchmark. This model de-
scribes the dynamic metabolic behavior of glycolysis, pentose phosphate, TCA cycle, gluconeogenesis, gly-
coxylate pathways and acetate formation. It contains 23 metabolites and 28 enzymatic reactions with 10 co- 
factors (e.g., nad, coa, atp). The corresponding metabolic network is shown in Figure 1 [3]. 

The metabolite concentration rate of the changes in this metabolic network is given by the following equation: 

d
d

i
ij i ij

c
R v C

t
µ= −∑                                      (1) 

where iC  the concentration of metabolite i, ijR  is stoichiometric coefficient of metabolite i in the reaction j, 
jv  is the rate of the reaction j and iCµ  is the growth rate of the dilution effect. All the formulas and the mass 

balance in this dynamic model are taken from [6]. 

2.2. Sensitivity Analysis 
Large-scale kinetic parameters of experimental data may require to be corrected through the Sensitivity Analysis 
to identify the parameters which are the most affected in the model output. Sensitivity Analysis is a set of  
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Figure 1. Metabolic network of E. coli.                                                                         

 
analytics and simulation used as a tool to understand the effectiveness of the parameters of the model response 
[13]. Sensitivity Analysis can be represented by different mathematical perspectives; it gives access to different 
numerical methods. These methods are divided into local and global methods: local methods consider the small 
changes in the model inputs, while global methods consider input values as random variables. Moreover, some 
researchers use different Sensitivity Analysis methods for different tasks. These include Mass and Energy Bal-
ance for developing a steady-state kinetic model [14], and Constraint-Based Analysis to study the impact of 
genes on the metabolic flux redistribution of S. cerevisiae [15]. In this study we apply the Sensitivity Analysis of 
large-scale dynamic metabolic networks to E. coli [6] using the method of One-at-a-Time Sensitivity Measures 
[16]. These will include Standard Deviation to examine the sensitivity changes in the model output, and the 
coefficient of variation in order to compare Standard Deviation with the original data. This will be done under 
the continuous culture at the steady state condition, by scaling all the kinetics of max andV K  one by one into 
percentages increasing 10%, 20% and 40%; with dilution rate of 0.1 in these enzymes: pts, pgi, pfk, aldo, gapdh, 
pyk, pdhpta, acs, ack, cs, icdh, 2 kgdh, sdh, fum, mdh, icl, ms, ppc, pck, mez, g6pdh, 6pgdh, rpe, rpi, tkta, tktb 
and tal. 

3. Parameters Identification 
Normally, estimation of the unknown parameters techniques is based on the difference between the simulated 
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model and behavior in the actual system model [13]. The function, that used to identify the large-scale metabolic 
network of E. coli system model, and the transfer, is as follows: 

( ) ( ) ( )1 1 2 2fitness s m s m si miR R R R R R= − + − + + −                   (2) 

where, miR  has the model reaction rate resulted for mi  kinetics and siR  is the simulation reaction rate result 
for si  kinetics. 

In order to identify the kinetic parameters sensitivity of the model employed by [6] we apply the PSO algo-
rithm to the seven kinetics to fit both the simulation (Sensitivity Analysis) and the real values of the model [6] 
by using experimental metabolites data taken from [17]. The concentration of metabolites used in the optimiza-
tion execution needs to fit the result of our metabolites simulation model closely. To achieve this the concentra-
tion is as follows: fructose 1,6-bisphosphate (0.67 mM), phosphoenol-pyruvate (1.04 mM), isocitrate (0.21 mM), 
2-keto-D-gluconate (0.134 mM). PSO was introduced by Eberhart and Kennedy as a new heuristic method [18]. 
During the PSO execution, the maximum number of generations is set as 100 (bird-steps); the dimension’s 
problem is 7 kinetic parameters; the population size (iterations) repeats 100 times; linear inertia weight is 0.9; 
PSO parameter C1 = 1.5 and C2 = 0.8, with lower and upper values for each kinetics. PSO was inspired by the 
food-searching behaviors of fish and their activities or a flock of birds in D-dimensional search space. The best 
individual position of particle i and the best position of the entire swarm are represented by [18]: 

( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 2 21i i i i i iv t v t c r p t X t c r G t X tω+ = + − + −                 (3) 

( ) ( ) ( )1 1i i iX t X t v t+ = + +                                   (4) 

where Pi is the best position already found by particle i until time t and G is the best position already found by a 
neighbor until t, ω  is an inertia weight parameter to exploration search space. c1, c2 are acceleration coeffi-
cients toward P and G respectively, and r1, r2 are random number between 0 and 1. In each iteration, the par-
ticles will use Equations (3) and (4) to update their position ( )iX  and velocity ( )iV , the algorithm used in this 
work will be described in Figure 2. 
 

 
Figure 2. PSO algorithms.                                                                               
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4. Result 
4.1. Sensitivity Analysis 
The One-at-a-Time Sensitivity Measures identify 7 kinetic parameters from 185 kinetic parameters of [6]. They 
are V_PYKmax, n_PK, ICDH, Kf_ICDH, Kd_ICDHnadp, Km_ICDHnadp and V_ICLmax. These represent the 
reaction rate of pykV , icdhV  and iclV  with a concentration of metabolites that are substrates and products of 
that reaction rate: PEPC , PYRC , ICITC , 2KGC , GOXC , and SUCC . These will be described briefly. 

The changes in the V_PYKmax result show that the metabolites of FDP and ICIT are highly increased, while 
ACE is highly decreased. The increase in the enzyme of ALDO is due to the decrease in GLcex, which in turn is 
regulated by its effectors ATP, ADP and PEP (as described in Figure 3 and Figure 4). The changes in n_PK 
show that the metabolites of FDP, GAPDHAP, PEP, ICIT and E4P are highly increased; ACP, ACE and S7P are 
highly decreased. The enzyme of Aldo is highly increased and Pta, Ack and Pck are highly decreased due to a 
significant reduction in GLCex. This in turn is regulated by the same V_PYKmax effectors described decreasing 
in GLCex, which is then in turn regulated by those same V_PYKmax effectors described in Figure 5 and Figure 6. 
The changes in results for ICDH, Kf_ICDH and Kd_ICDHnadp show that highly increasing levels of the meta- 
bolite of ICIT and deviation in the Km_ICDHnadp result have the effect of greatly reducing ICIT also. This is 
then in turn regulated by its effectors NADP, NADPH and 2KG, as shown in Figures 7-14 respectively. The 
changes in V_ICLmax will be shown in Figure 15 and Figure 16. Moreover the kinetics of ICDH and Kf_ICDH 
have the same results, and these may be to ascribed to increasing levels of ICIT metabolites. 
 

 
Figure 3. The effect of V_PYKmax in metabolites.                               

 

 
Figure 4. The effect of V_PYKmax in enzymes.                                 

 

 
Figure 5. The effect of n_PK in metabolites.                                     

 

 
Figure 6. The effect of n_PK in enzymes.                                        
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Figure 7. The effect of ICDH kinetic in metabolites.                               

 

 
Figure 8. The effect of ICDH kinetic in enzymes.                                 

 

 
Figure 9. The effect of Kf_ICDH kinetic in metabolites.                            

 

 
Figure 10. The effect of Kf_ICDH kinetic in enzymes.                             

 

 
Figure 11. The effect of Kd_ICDHnadp kinetic in metabolites.                       

4.2. Optimization 
All the kinetic parameters executed on the particle swarm optimization algorithm, whose lower and upper values 
are started by ±1 in order to reach the best lower and upper boundaries, achieved the best optimum values. The 
optimized parameters are tested in the same model to reduce the errors between the experimental data and actual 
model data. This will be the focus of the next section. The optimal values are shown in Table 1. 
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Figure 12. The effect of Kd_ICDHnadp kinetic in enzymes.                             

 

 
Figure 13. The effect of Km_ICDHnadp kinetic in metabolites.                           

 

 
Figure 14. The effect of Km_ICDHnadp kinetic in enzymes.                            

 

 
Figure 15. The effect of V_ICLmax kineticin metabolites.                              

 

 
Figure 16. The effect of V_ICLmax kineticin enzymes.                                

4.3. Validation 
In oreder to prove that, the one-at-a-time sensitivity analysis measure and PSO algorithm methods has great im-
pact in optimizing large-scale kinetic parameters, the original kinetic parameters in the model formulated by Ka-
dir [6] which are V_PYKmax, n_PK, ICDH, Kf_ICDH, Kd_ICDHnadp, Km_ICDHnadp and V_ICLmax are re-
placed by the opimum kinetic parametrs values in Section 4.2 then tested. The validation results shown in Figure 
17 there are 4 metabolites moved closely to the experimental data which these metabolites are FDP, PEP, ICIT 
and 2KG. 
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Figure 17. The metabolites estimation.                                             

 
Table 1. Kinetics optimization.                                                                                    

Kinetics Nominal value Optimal values 

V_PYKmax 1.085 0.921 

n_PK 3 3.32 

ICDH 24.421 24.62 

Kf_ICDH 289,800 2,829,800 

Kd_ICDHnadp 0.006 0.012 

Km_ICDHnadp 0.017 0.013 

V_ICLmax 3.8315 3.942 

5. Conclusion 
This study has applied One-at-a-Time Sensitivity Measures to assess the effectiveness of large-scale kinetic pa-
rameters in a dynamic metabolic network into the steady-state condition of E. coli. By programming to measure 
how much they affect the model response, the analysis has identified seven particular kinetic parameters as be-
ing the most effective in their allowable range. Particle swarm optimization algorithm has been applied to the 
kinetics result of the sensitivity analysis, based on continuous culture with a dilution rate of 0.1 to fit our result 
in the model output of [6]. Further investigations, particularly the inclusion of Kinetic Parameter Optimization, 
are needed to give a precise result regarding the relation between the Sensitivity Analysis methods and the sys-
tem dynamic properties. Finally, the validation of numerical results shows that the large-scale kinetic parameters 
optimization procedure has provided effective estimation. 
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Nomenclatures 
Metabolites 
Glcex: Glucose;  
G6P: Glucose-6-phosphate;  
F6P: Fructose-6-phosphate;  
FDP: Fructose 1,6-bisphosphate;  
GAP: Glyceraldehyde 3-phosphate;  
DHAP: Dihydroxyacetone phosphate;  
PEP: Phosphoenolpyruvate,  
PYR: Pyruvate;  
AcCOA: Acetyl-CoA;  
AcP: Acetyl phosphate;  
ACE: Acetate;  
ICIT: Isocitrate;  
2KG: 2-Keto-D-gluconate;  
SUC: Succinate;  
FUM: Fumarate;  
MAL: Malate;  
OAA: Oxaloacetate;  
6PG: 6-Phosphogluconolactone;  
Ru5P: Ribose 5-phosphate;  
Xu5P: Xylulose 5-phosphate;  
R5P: Ribulose 5-phosphate;  
S7P: Sedoheptulose 7-phosphate;  
E4P: Erythrose 4-phosphate. 

Enzymes 
PTS: Phosphotransferase system;  
PGI: Phosphoglucose isomerase/glucosephosphate isomerase;  
PFK: Phosphofructokinase-1;  
ALDO: Aldolase;  
GAPDH: Glyceraldehyde 3-phosphate dehydrogenase;  
Pyk: Pyruvate kinase;  
PDH: Pyruvate dehydrogenase;  
Acs: Acetyl coenzyme A synthetase;  
Pta: Phosphotransacetylase;  
Ack: Acetate kinase;  
CS: Citrate synthase;  
ICDH: Isocitrate dehydrogenase;  
2KGDH: 2-Keto-D-gluconate dehydrogenase;  
SDH: Succinate dehydrogenase;  
Fum: Fumarase;  
MDH: Malate dehydrogenase;  
Mez: Malic enzyme;  
Pck: Phosphoenolpyruvate carboxykinase; 
Ppc: PEP carboxylase;  
ICL: Isocitratelyase;  
Ms: Malate synthase;  
G6PDH: Glucose-6-phosphate dehydrogenase;  
6PGDH: 6-Phsophogluconate dehydrogenase;  
Rpi: Ribulose 5-phosphate 3-isomerase;  
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Rpe: Ribulose phosphate 3-epimerase;  
Tkta: Transketolase I;  
Tktb: Transketolase II;  
Tal: Transaldolase. 
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