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Abstract

The purpose of this study is to familiarize the reader with the diversity of concepts (notions) and stages of
development specific to Probability Theory, with the definition and characterization of variables, vectors
and random processes, respectively with the most important elements that give random processes. Among
these we mention the distribution function, the probability density function, the statistical moments of a
random process, the temporal averages, and respectively the correlation (and intercorrelation) of a
random signal (process). Also, the implications of random processes in the study of dynamical systems
are reviewed, as well as a series of applications specific to the analysis of dynamic behavior.

Keywords: Probability, random processes; mathematical representations,; dynamic system.
1 Introduction

It can be considered that the beginning of probability theory is in the seventeenth century, in a series of
letters from 1654 between Blaise Pascal (1623-1662) [1,2] and Pierre de Fermat (1601-1665) [3], in which
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they solved the problem of the unfinished game, a problem related to gambling and raised Pascal by Antoine
Gombaud-Cavalier de Meré (1607-1684) [4]. The problem of the unfinished game requires the
determination of the pot split when a multi-round game must be abandoned before it is over.

Before the correspondence between Pascal and Fermat, Girolamo Cardano (1501-1576) [5], in his book
Book of Gambling (Liber de ludo aleae), published the first scientific study on the roll dice, based on the
hypothesis that some fundamental principles are governing the probability of obtaining certain results. The
mathematics created by Pascal and Fermat, which seemed dysfunctional in the chaos and unpredictability of
everyday life, received a substantial boost with the publication by John Graunt (1620-1674) [6] of the book
Natural and Political Observations Based on Mortuary Announcements. In his paper, Graunt analyzes and
organizes London death records from the 1660s to create a system to signal the onset and spread of the
plague in London. This brochure can be considered as the cornerstone of modern statistics [7,8]. The
techniques developed and used by Graunt in the paper made it possible to apply the theory developed by
Pascal and Fermat, initially for gambling, in everyday life. For the first time, mankind had a means of
making predictions and controlling it through decisions based on risk analysis.

In 1657, Christiaan Huygens (1629-1695) [9] wrote On the Calculations of Gambling (De ratiociniis in ludo
aleae), the first true work of probability theory in the modern sense. In this paper, Huygens establishes the
fundamental rules of probability calculus, starting from the axioms of probability theory. Huygens also
introduces the notion of hope (or expected gain, which is calculated by multiplying the probability of each
outcome by the amount to be won, or lost - a negative gain - and summing all the results) and uses Graunt's
tables to calculate the hope of life.

Jakob Bernoulli (1654-1705) [10] made a significant mathematical contribution by stating the "law of large
numbers", an important consequence of probability theory. This law gives the mathematical formulation of
the fact that the relative frequency of an event will predict the probability of its occurrence the more
accurately the higher the number of observations from which the relative frequency is calculated. Bernoulli
also showed that by choosing a sufficiently large sample, we can increase to any desired level the confidence
that the probability calculated for the sample is equal to the true probability.

Abraham de Moivre (1667-1754) [11] showed that a set of random observations is distributed around an
average value (today it is called normal distribution). Graphically, the resulting curve (results of
observations vs. frequency of observations) has the shape of a bell. This shows that most of the results of the
observations are grouped around the mean. From the average, the curve descends symmetrically.

At the beginning of the 19" century, Karl F. Gauss (1777-1855) [12] noted that the graphical representation
of a series of results obtained by repeated measurement of the same size produces a curve that strikingly
resembled de Moivre's bell. Gauss considered the bell curve to be a consequence of unavoidable
measurement errors and used the normal distribution as a basis for estimating the probabilities of events (the
results of observations).

On the road from solving the problem of the unfinished game to managing risk, the final mathematical step
was taken by Thomas Bayes (1702-1761) [13] by finding an ingenious and extremely powerful
mathematical formula that offers a method to correct a probability in the light of new information. Thus, if
there is an estimate of the previous probability of occurrence of an event and if new (additional) information
appears, a more accurate posterior probability of occurrence of that event can be obtained. Repeatedly
applying Bayes' formula, each time new information is obtained, allows the correction of an unreliable
previous probability so that, in the end, a very reliable posterior probability is obtained.

Numerous practical problems, associated with the phenomena of nature and society, from various fields of
activity (electrical engineering, radio, data transmission, computers, information theory, reliability of
systems, and others) lead to the study of random processes and phenomena. The evaluation of their chances
of production is the object of the discipline of probability theory. Probability theory thus provides a
mathematical model for describing and interpreting phenomena that have statistical regularity. Probability
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theory allows modeling and quantifying the uncertainties that appear in the calculation models used to
dynamical systems.

Through this paper, we want to make a brief foray, in the dynamic systems analysis from a random variables
perspective. The dynamical behaviour of different systems, as well as their analysis and interpretation, were
made mainly taking into account the relevant mentions of probability theory and various publications in the
online environment.

2 Materials and Methods

The documentation for this paper started from the authors' concerns for dynamic systems, for the
management, analysis, and interpretation of such systems in the context of Probability Theory, the focus
being on implications of random processes in the study of dynamical systems. Having at hand a series of
extremely relevant studies at the international level, and less national, in terms of the management of random
processes, we decided to extrapolate these approaches to the relatively limited space of Systems Theory,
where dynamic systems are in the foreground.

This is how we start our incursion in the random processes implications in dynamical systems identification,
analysis, and behavior interpretation. There are a few studies that make direct reference to the management
of systems, in general, or dynamic systems, in particular. The collection, analysis, and interpretation of data,
mostly related to different processes - such as Markov, diffusion, Wiener, and white noise, was realized
related to the Probability Theory.

3 Results and Discussion

3.1 Definition and characterization of random elements

The study of a system is of interest for understanding the relationships between its components or for
predicting how it will work in new conditions. Sometimes it is possible to experiment with the system itself,
but not always. Indeed, the system may not yet exist, but may only be in the hypothetical form or the design
phase. Consequently, the study of systems is performed with the system model, according to the specific
principles of the Systems Theory (ST) considered [14-16]. ST involves the interdisciplinary study of the
abstract organization of phenomena, regardless of their substance, their type, the spatial or temporal scale of
their existence. Systems theory also investigates principles common to all complex entities, as well as
models (generally mathematical) that can be used to describe these entities (systems).

The notion of system is common in various fields of technology and science, in economics, in nature and
society. Such are the concepts of the social system, economic system, system of equations, physical system,
dynamic system, information system, management system, automatic system, etc [17,18]. A system
comprises multiple aspects (for example planning, specifications, analysis, design, implementation,
deployment, structure, behavior, input data, and output data). The model of a system is needed to describe
and represent these multiple aspects. Systems modeling is a basic principle in engineering and the social
sciences.

A model is defined as a conceptual (abstract) representation of a system that artificially reproduces and
describes the existing original system, which allows the study of the system, thus serving to know the
properties of the original system and predict its behavior. A model is a schematic description of a system,
theory, or phenomenon that explains it's known or assumed properties and can be used for further study of its
properties.

For many studies, it is necessary to consider only those aspects (or variables, in this case, variables specific

to random processes) of the system that are relevant to the researched problem. These (variable) aspects are
represented in the system model, and the model, by definition, is a simplified representation of the system.
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On the other hand, the model must be sufficiently detailed to allow valid conclusions to be drawn when
conducting experiments on the model, to know the properties of the real system. No model of a system will
include all the features of the real system of interest and no model of a system should include all the entities
that belong to the real system of interest.

Systems are often viewed or modeled as component blocks that have connections to each other. There are
alternatives to representing a system as a single unit on a single level, or as a collection of subsystems that
must be coordinated at the general "system level". This is an important modeling decision when the size of
the system is large. In the vast field of science few features cannot be described in mathematical terms or
few areas that cannot benefit as a result of understanding the models of some systems. The use of models
and the modeling process has become an important tool in systems analysis in that it offers the possibility of
exploring hypotheses that cannot be easily tested by field or laboratory experiments.

Representations of the term model have been proposed by various authors. Jackson et al. (2000) propose an
interpretation of the model by the idea of a particular representation of an idea or a condition, which varies
in complexity from the simple form of assigning an action on a subject to the description of processes
through mathematical equations. From the perspective of the author's Yu et al. the model is the formal
description of the essential elements of a problem within a system of interest; Seppelt (2003) notes that
models are tools that help to understand how processes work and regularly allow testing hypotheses, and
Gillman (2009) offers a simplified version, defining the model as a representation of reality.

The choice to use a deterministic or stochastic model is expressed depending on the purpose and objectives
of the modeling project. From the complexity considered in the model development process, in the case of
deterministic ones it is reduced because it requires only the estimation of constants, while in the case of
stochastic ones it is necessary to specify the complete distribution of values assigned to random variables.
Regarding their use, in this case, too a low degree of difficulty is attributed to deterministic models, because
to predict a given situation it is necessary to run a single model, whereas in the case of stochastic models it is
necessary to perform an average of the replica responses of the predictions.

A random variable is a quantity whose value cannot be predicted with sufficient accuracy before an
observation is made. An alternative definition can be formulated as follows: a random variable is a function
whose values are real numbers and depend on chance. If a numeric value is assigned to any event that may
occur as a result of observation, the resulting set of possible numbers is a random variable. Next, some
clarifications will be made regarding the implications of the theory of random processes in the study of
dynamic systems, with emphasis on the methods of analyzing the behavior of mechanical dynamic systems,
which involve random variables in the form of associated vibrations.

As a result, we can say that the methods of analyzing the behavior of mechanical dynamic systems, as well
as the random vibrations associated with them, have experienced a continuous development in recent
decades due to high needs to design structures and equipment with superior functional performance and high
reliability. , particularly complex, to which they are subjected during operation. A common feature of these
types of demands is the impossibility to describe their evolution, over time, in a deterministic way, due to the
behavioral dynamics of the whole system (the black box concept).

The dynamic behavior of mechanical systems with random parameters is described by stochastic differential
equations whose treatment depends essentially on how the random factors intervene:

» Differential equations with random initial conditions - an important role in statistical mechanics,
statistical thermodynamics, a priori analysis of spacecraft trajectories;

» Differential equations with random coefficients - used in the study of systems whose parameters have
imprecise values due to inherent material or workmanship imperfections;

» Differential equations in which the random part enters as a non-homogeneous term - representing the
external perturbation applied to the system in the form of a random time function.
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The last category of differential equations has the widest field of applications, being used in modeling the
dynamic behavior of most mechanical structures encountered in practice (road and rail vehicles, ships,
aircraft, civil and industrial construction, machinery, machine tools, etc.). Depending on the practical
problem analyzed different combinations of how the random factors mentioned above can be used.

Another particularly important notion, to which I refer to the study of dynamic systems, is that of random
processes. Random variables represent, under the conditions of a fixed event (according to the specific
requirements of a reference probability field), a particular realization of the random process. Other notions
that appear as the novelty and that also have a significant role in the study of linear dynamical systems, from
the perspective of random process theory are the following, although they were treated only at a lapidary
level:

» Random process distribution function - defined as an extension of the distribution function of a
random variable, which has developed over time; as a result, its value at a point will be the probability
that the value of a particular realization of the random process at a given time is less than or equal to
the value of the point;

» The probability density function - which is derived from the distribution function;

» Statistical moments of a random process - defined by the temporal extension of the statistical
moments (averages) of a random variable;

» The temporal averages of a random signal (process) - can only be defined for a particular realization
of it, so the usual cases of interest are the temporal averages of order 1 (continuous component) and
order 2 (average power);

» Correlation (and intercorrelation) of random processes - defined analogously to the case of random
variables; and here the essential difference is determined by the introduction of the temporal
dimension, besides, there will be two types of correlation functions, depending on the mediation used:
statistical or temporal.

Within the random processes, a special place is occupied by the Markov processes characterized in that the
appearance of a certain state is conditioned only by a certain number of previous states. If the number of
these previous states is r, then it is a Markov process of order r. Markov processes of order 1 occupy an
important place in the study of traffic processes that characterize the telecommunication network as a whole
for example. It means that if a system is at times in limited states of time and if it behaves like a 1% order
Markov system, then the probability that at a later time its state will be determined only by its state from the
previous moment.

3.2 Implications of random processes in the study and behaviour analysis of dynamic
systems

In many practical cases, the excitations acting on a structure are random, and the response of the structure
can no longer be described, under these conditions, in a deterministic way. Thus, the excitation induced by
the unevenness of the road on a car, the earthquakes, the turbulence in the air, or the water, the action of the
wind, or the waves, are examples of excitations that by their nature have a random character.

The theory of random processes was first successfully applied to Einstein's modeling of the behavior of
dynamical systems in 1905, which showed that the probability density of the random process describing
Brownian motion satisfies the diffusion equation.

A stochastic process, or sometimes a random process, is the opposite of the deterministic process (or
deterministic system) considered in probability theory. Instead of a single possible reality about how
processes can evolve, in a stochastic process, there is uncertainty in the future evolution described by
probability distributions. This means that although the initial condition (or starting point) is known, there are
more possibilities to continue the process, but some ways are more likely than others. A stochastic process
can be represented as a random function. In practical applications, the domain of definition of such a process
is a time interval - called the time series - or a place of space - in this case, called a random field.
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1

n
T
Let R" be the n-dimensional Euclidean space with norm ||a|| = (z a,fj ,a= [al,az,. . .,an] eR"
k=1
its elements, called vectors, being represented as a column-matrix. Consider a reference probability field
(Q,K ,P) , where €2 is the set of elementary elements, K is ¢ -algebra of parts of {2 (random events),

and P acomplete measure defined on K with the property P (Q) =1 (probability).

We note by V" (Q) the set of random vectors defined on € with values in R" and by V" (Q) the set
of random processes defined on 7 x Q) , with values in R". A random vector process x(l, a)) eV} (Q)

represents a family of random vectors from V" (Q) , indexed by the set 7" . Independent variable ¢ € T has

the significance of time.

3.2.1 Markov processes

A random vector process x(t) = [xl (z‘),x2 (t),. e X, (t)]T el (Q) is called the Markov process if

for any finite set {tl,l‘z,...,l‘k |tl. <tl.+1} c T, any Borelian set AcR and any o Ul it b R R',
we have
P({a) € Q|x(tk,a)) € A}‘{a) € Q|x(t1,a)) =X, %, X(t,_,0)= x,H}) =
&)
P({a) € Q|x(tk,a)) € A}‘{a) € Q|x(tk_l,a)) = xk_l})
b W P i = & .. . . .
where for two random events 17 "2 represents the conditional probability of E, in relation to

E, , defined by

P(E1 uEz)

PR =5 )

()

Relation (1) shows that Markov processes enjoy the property that, once they reach a certain state, under
certain conditions, their statistical distribution in the future no longer depends on how they reached that
state. Moreover, since these processes are subject to the principle of causality (the future can be predicted
based on the knowledge of the present), they play a particularly important role in the study of dynamic
systems subjected to random excitations (disturbances).

Conditional probability in the right member of the relation (1) it is called the transition probability of the
Markov process x(t) and it is noted with P (A,t

transition P (A,t

x’,t’), where #' <t . Assuming the probability of

x',t') has a density p(x,t x’,t') so as to
x',t') = Jp(x,t
A

The property (1) can be expressed in relation to the probability densities conditioned in the form

P(A,t

! ! !
x,t)dx,t<t (3)
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p('xk’tk |x1ax2’---axk—1at1 ’t2""’tk—1) :p('xk7tk |xk—1’tk—1)7

t<t,<..<t,

“4)

Conditional probability density p(x,t x’,t’) , '<t, is called the transition probability density of the

Markov process x (t) and together with the first order probability density p (x, t) completely determines,

from a statistical point of view, the considered random process. Applying the definition of conditional
probability density and property (4), you can write the relation

P Xy Xl ol )= Pl XX oty )X P Xl oty )
= Pt %ot )X P (Kol [ X sy sy )X P (K Xy o)

:"':p(xk’tk |xk—1’tk—1)xp(xk—l’tk—l|xk—2’tk—2)x'"xp('xZ’tZ |x17tl)xp(x1’tl)’

f<t,<..<t,

)

kelN

order probability density and transition probability density. For the Markov process x (t) the relation can be

whence it follows that for any , order probability density k it can be expressed in terms of first-

written

p(x",x,t”,t x’,t') =...= p(x,t x", t”)p(x”, t"|x', t') Lt <t <t (6)

hence by integration on IR" , the Chapman-Kolmogorov equation is obtained

X, r’]: J p(.r,r

mn

).‘".r") p( o o

p(.r.r .x’.r')d.r". Gl A %)

which is satisfied by the transition probability density of a Markov process.

Depending on the values of the random vector x (t') e V" (for any t' given), transition probability density

x',t ') is a random variable belonging to Vl, whose average is precisely the first-order probability

p(x,t
density of x (Z) , respectively

M[p(x,t

x',t')} =p(xt) ®

Applying the average operator results

ij]zi;ﬁxJ

M[p(x,f

X' 1"\M [p{ s alid) ]dx" )

where the relation
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p(x.t)= _" p(x,r|.x",r”)p( 0 Yl <t (10)

T h

is obtained from, that is, the first-order probability density of a Markov process satisfies the Chapman-
Kolmogorov equation. But if the Markov process x (t) €V, itis stationary in the broadest sense, then

p(x.0)=p(x). p(xi.x,000.0,) = p(x.%,.8, —1,) (11)

and by virtue of the relation

p(xl’x2’t1’t2)

(12)
p('xl’tl)

p(xz’t2|x1>t1):

it turns out that the transition probability density p(xz,tz |x1,t1) it just depends on the difference £, — 1,

where #, <t,.As aresult, it can be written that

p(x.6)x%.4) = p(x,.1]x,,0) (13)

where £, <t, and t =, — ¢, . In this case, the transition probability density is denoted by p(x,t x') , and

the Chapman-Kolmogorov equation presented in (7) becomes

p(x.t+t|x) :J p( x.t ) p x"| ) dx” (14)

as it immediately follows from (7) placing 7 and f+ 7 in the place of ¢" and ¢ .

In the case of a stationary Markov process in the broad sense, applying the relation (5), we obtain that this
random process is also stationary in the narrow sense. Therefore, Markov processes are part of the category
of random processes for which stationary in the broad sense implies stationary in the narrow sense. We
mention that this category also includes random processes with normal distribution which also play a
significant role in modeling dynamic systems subjected to random excitations (perturbations).

If limx e p(x,t x’) =p, (x) , then p_ (x) is called the asymptotically stable stationary probability

density of the Markov process x (t), in relation to # . Also in relation to the conditional probability density

x’) the conditioned moments of different orders of the Markov process x(t) can be defined,

p(x,t

respectively

o (9)= [ A3 o A )

R”

(15)
xz[x],xz,...,x”]r, k.k,,....k e N
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The vector of first-order conditioned moments (the vector of conditioned averages) of the Markov process
X (t) it is, in a particular case, given by the relation

m(f|x'): J‘ xp(x,t|x')dx (16)
RH
and the conditional covariance matrix has the form

C(t|x')= I [x—m(t|x')}[x—m(t|x')]T p(x,t

R”

X' )dx (17)

In case of asymptotically stable stationary probability density, the mean vector and the covariance matrix of
the Markov process x (t) have asymptotic expressions

m= j xp, (x)dx

R"

C(e) = J[=mls ] p(al ), ()i o

By virtue of the relationships presented above it follows that lim, _mm(t x') =m and

lim, C(t|x')=C(0), because limHOp(x,r|x’):5(x—x’). Matrix C(0) it is called the

instantaneous covariance matrix of the stationary vector random process x(t) and it is particularly

important in characterizing the response of dynamic systems with random excitations, because it contains
useful information on the intensity of the response and the statistical dependence between the simultaneous
values of its components.

3.2.2 Diffusion processes

A Markov process x(t) eV, itis called the diffusion process, if the following conditions are met (fully

met):

i. Forany x' € R" and £ >0
I p(x,tx’,t’)dsz(t—t')

Hx—x’H<£

(19)

uniform in relation with #' <fand x,x' € R".

ii.  There is the vector a (x,t) = [al (x,t),a2 (x,t),. .a, (x,t)]T and matrix

B(x,t)Z[blj(x,t):I, i,j=12,...,n,s0forany x € R" and ¢ >0

(x—x’)p(x,t x',t’)dx = a(x’,t)(t —t’) + O(t —t') 20)

Je-¥<e
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(x - x’)(x —x')T p(x,t

Je-x<e

Xt )dx = B(¥,0)(t=1)+0(t 1) e

uniform in relation with ' <¢ and x,x" € R".

The vector a (x, t) is called the transfer vector, and the matrix B (x, t) it is called the diffusion matrix of

the vector random process x( z). The name diffusion processes is based on the fact that random processes

with the aforementioned properties have been used in modeling physical diffusion processes in
inhomogeneous environments. In such a modeling, the random process x (t) € Vﬂg represents the position

vector of a microscopic particle suspended in a liquid, the vector a (x, t) defines the velocity of the liquid

at the point x at the moment 7, and the matrix B(x,t) defines the properties of the environment,

especially in terms of the statistical distribution of particle displacements in different directions.

Diffusion processes therefore play an important role in the study of the response of dynamic mechanical
systems subjected to random excitations, as they can be used for a sufficiently wide class of random
processes that model excitation (we speak of random processes with rational spectral densities) and have the
advantage that Under certain conditions, general enough for practical applications, their probability densities
can be determined by solving differential equations with partial derivatives. In this sense, the following
theorem is true.

If x (z) it is a diffusion process and there are continuous partial derivatives

x,t') G[ai (x,t)p(x,t

>

8p(x,t
ot

x| and &*[b, (x1) p(xtf.r)]

Ox, Ox,0x ;

1

,Lj=L2,...n

then for ' <t and x,x' € R", p(x,t x’,t') satisfy the equation

w__gdalteir] 140 x0p] @

ot = Ox, 253 x,0x;

With the initial condition

limp(x,t x’,t’)=§(x—x') (23)

>t

Equation (22) is called the Fokker-Planck equation. If the dissemination process x(t) is a stationary one,

then the transition probability density p(x,t x') satisfies, in its entirety, the equation (22) with initial

condition

lim (x,t x') = §(x —x') (24)

=0
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A solution p(x,t x') of the Cauchy problem, in order to be probability density, it is necessary to satisfy

the following conditions as well:

p(x,t x') >0, froany x,x' € R” and t € R" (25)
Hi[p(x,t x')zl,forany x,x'eR" and teR" 26)
lim (x,t x’)go(x')dx’ = (p(x) 27

=0

for any initial probability density ¢ (x) .

In many practical applications, both the transfer vector a (x,t) , as well as the diffusion matrix B (x, t)

are independent of time. In this sense, if there is asymptotically stable stationary probability density p_ (x) R

previously defined, then it satisfies, by itself, the homogeneous equation

z": G[ai (x.7) p, (x)] +l i o [bl.j (x.7) p, (x)]

= ox, 253 Ox,0x;;

=0 (28)

which is called the stationary Fokker-Planck equation.

Assuming that we are dealing with an infinite regular behavior of probability densities p(x,t x’) and

Dy (x) , the boundary conditions for the above equations, (20, 21), will be respectively

lim p(x,t

o]

x')=0and lim p (x)=0 29)

(I

We also mention that these boundary conditions can be imposed for the vast majority of dynamic systems
encountered in daily practice, as they express a physical reality. Because probability densities are positive, it
is most often assumed that we have

oplx,t|x' op.
Mzo and 1imM:0,i=1,2,...n (30)
> Ox, == Ox,

3.2.3 Wiener processes

A random process x(t) € V]Ri it is called a process with independent increases if for any finite set

{l‘l,t2,...,tk|ti <ti+1} CR+ random  variables x(tl),x(tz)—x(tl),...,x(tk)—x(tk_l) they are
independent. If, in addition, x(t + 2') -Xx (Z "+ Z') has the same statistical distribution as x (t ) -Xx (t ') for

any ¢' <t and any 7 > 0 it can be stated that x (t) it is a process with independent stationary growths.
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k
Let ¢7(u1a”27--~7ukat1at2a---atk) =M{expi2(uj xt, )} be characteristic function of the order k£ of
j=

the process x(t) with independent increases. Because

.M»

(uj xt_l.) =u, [x(tk)—x(tkf1 )]+(u,H +uk)[x(tk71)—x(tk72 )]+...+

+(u2 +...+uk)I:x(tz)—x(tl):|+(u1 +u, +...+uk)x(t1)

~
N

by virtue of the independence of random variables x( ) x(tk 1) , x(tk_l)—x(tk 2)
( 2)—x(z‘l), x( l),1tcanbewr1tten

k k
@y, ty,stty 1,0, 1) =M Hexpzx Zul}{expi[x(tz)—x(tl)]zui}x...x
Jj=1 j

x{expix(6,,) = x(6,,)] (e, + 1, )} {expil x(s, )—x(zk,l)}uk}] =
Hexpzx zH Hexpi[x(tz ]zu H M fexpil(t,) (s, Ju}]

hence it follows that in order to fully characterize a process with independent growths, it is sufficient to give
its distribution x(7) and x(1)—x(z) forany r<teT.

A random process w (t) € Vﬂé is called the Wiener process if:

i. W(Z) it is a process with independent stationary growths;

ii. w(t) has a normal distribution;
i, M[w(t)] =0:

v, P({oe|w(w,0)=0})=1.

Wiener processes are also called Brownian processes because they were used to model the motion of a
particle suspended in a liquid, a motion caused by its collision with the molecules of the liquid. To determine

the analytical expression of the quadratic mean va (t) of a Wiener process w(t) we consider the relation

Gi(t-f—T) =M[w2 (t+r)] =...=M[w2 (t)}+M[{w(t+r)—w(t)}2J 31

valid by virtue of the independence of growth w(t + Z') - w(t) and w(t) - W(O) = w(z) and the fact

that M I:W(l‘ ):I = 0. On the other hand, the stagnation of the process w(t) increases involve
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M| (e ) =w(o)} == M [w (1)] (32)
as such
va (Z+T)=0fv (Z)+va (Z') (33)

which is is a functional equation whose solution O'j, (Z) is in form O'j, (Z) = ct, where ¢ it is a positive

constant, which in practical cases can be determined experimentally.

Since a Wiener process is a normal process with zero mean and square mean of form (33), its first-order
probability density has the expression

! —ex L (34)
27t P —2ct

To determine the correlation function R (t, t’) of the Wiener process w(t) we write

R, (8.1 = M w(t),w(t') ]= M {w(t) = w(t')+w(£)} . w(t') | =
=M [ {w(t)-w(t)} |[M[w(t) ]+ M[w (£)]= 0% (¢) =t

for t >¢'; analogue, R (t, Z') =ct for t<t'. Assuch, R (Z,t') = cmin (Z,t').

p(w,t):

(35)

Because the correlation function R (t, t') it is continuous at any point (t, t’) e R, xR, it turns out that
the random process, and at the same time Wiener, w(t) , is continuous on the square average on R, and is

therefore also integrable on a square average over any interval 7 — R, considered.

R, (1,1
otot'

are not derivable anywhere in the quadratic mean. Moreover, they are not even with a limited variation in the

On the other hand it does not exist at any point (z, z’) e R, xR, and so Wiener processes

square mean. A Wiener process w(t) is a Markov process, since

p(wk,tk |wl,w2,...,wk_l,tl,tz,...,tk_l):
= p(w =y + e =w(0) 2 [ = w(0), Wy =w(0),...o W, =w(0), byt ) =
- P(Wk —w,_, +w,_, —w(0).z, |Wk—1 —w(O),tk_l) o
:p(wk,tk|wk_l,tk_l)
3.2.3 White noise

White noise is, in turn, a widely used random process in modeling dynamic mechanical systems subjected to
random excitations. Although this process is not physically feasible (its energy being infinite), it can still
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become a useful approximation for many other random processes encountered in practice, especially when
subjected to filtering operations. Using white noise, a series of simplifications are obtained with importance
for the study of stochastic differential equations. White noise can also be formally defined in different ways.

A Markov process z (t) € Vﬂé it's called white noise if for any # >¢' we have that

p(z,t z',t') =p(z,t),pentru z,z eR. (37

The above relationship expresses that for any #,/' e R, Z(Z) and z(t’) are independent random

variables or, in other words, the values it can take z (t) at two different time points they do not statistically

depend on each other, no matter how close the two time moments are. This is of course physically
impossible. Although the above statements express a number of properties specific to white noise, they are
not useful in practical applications; because of this, white noise can be more easily characterized indirectly.

Thus, in the following, we will consider that z(z) it is a stationary random process with normal

distribution.

Let x” (Z) be a normal stationary random process with zero mean having the correlation

i (38)
function Rf(l’)=27Z'SO§e A ‘,pentm p>05S5,>0

For sufficiently large values of o properties of the random process x” ( t) approximates those of a normal
stationary white noise, as the correlation function R” (r) , which expresses the statistical dependence
between x” (Z) and x” (t + z’) , takes very small values even for values of 7 close to zero. If, instead, p
is an integer then the sequence of functions R”" (1)/ 2xS,, where p, < p, <..., generates the Dirac

distribution & (r) . Under these new conditions, we are thus led to the following definition of white noise.

A stationary random process with normal distribution z (t) is called normal white noise if

i. M[z(t)] =0;

ii. R (7) :M[z(t)z(t + r):I =278,6(7).

Because o (z’) it is not an ordinary function, but rather a generalized function, it is seen once again that
white noise is a purely mathematical concept. Also, the spectral density of the random process x” (t)

having the correlation function (38) has the expression

17 S,

P _ P —itL —
Sx (U)_ 27Z_J;Rx (T)e | (sz (39)
_l’_ J—
T

. S (v)=S§ . . .
P =P e obtain that - ( ) O, property that underlies the name of white noise of the random

For

process z (t), by analogy with white light, which contains all the frequency components. The fact that the
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spectral density of white noise is constant over the entire frequency range, implies infinite energy of it,
which gives it the character of the unfeasible physique. If the spectral density of a random process is approx.
constant to sufficiently high frequencies, this is called a broadband random process, in which case white
noise can be a useful approximation.

Normal stationary white noise can also be defined from Wiener processes, this definition is considered in the

L . . . z(t) . .
case of Ito-type stochastic differential equations. Since the random process ( ) is not derivable on a
quadratic average, the distribution defined by the relation is considered

<0.0,>= [ p()0,()dt' = [ p(t')at (40)

which is derived from the distribution

0

<(030t, >:_<¢,>9t>:_I¢(t,)dt,=¢(t)=<(oa5;> (41)

—00

Therefore, in the sense of the theory of distributions, the relationship can be written immediately

R, (1.1)

=5(t=t 42)
otot' ( t)

which can be seen as an extension of the necessary and sufficient condition of derivability in the quadratic
mean of random processes and therefore only in this sense can normal stationary white noise be defined as
the derivative of a Wiener process. Next, we will specify this definition by notation

dw(t)=z(t)dt (43)

where dw(l ) = W(Z + dl) - w(t) represents the random process of infinitesimal increases of the Wiener

process w(t) and has the properties
i M[dw(t)]zo;
. M[{dw(t)}? = cdt;
i, M[dw(t)dw(t')|=0.for 121",

The following is a process for generating white noise as the limit of a series of random processes whose
achievements take constant values over time Af, then At — 0. Let z* (t) € Vﬂé be the random process

defined by the relation

28 (t)=z,, kAt <t <(k+1)Ar, k=0,1,2,... (44)

where z, are normal random variables with zero mean and independent two by two, so that
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M|zz,]=c6,,. Lm=0,1,2,... (45)

¢ being in this case a positive constant. Whether 7 € R, % ; is an integer and we consider the variable

random yA (t) whose values are obtained by integrating the achievements of the random process z* (Z )
T
on the interval [0,7], so y (t) = IZA (t)dt, where obviously M[yA(T)] =0. From the above

relations we obtain that

T/, (k+1)At (k+1)As

= JZ'J:M[ZA () 2" (¢') | dedt' = ﬁ J' J' cdtdt' =TcAt .

k=0 kAt kAt

2
It is observed that if ¢ it is kept constant then M [{ yA (T )} } =0 when At — 0. This is equivalent to
dy* (1)

oy . . . . A .
the effect of random excitation z* (t) in the differential equation =z (t ) is reduced to zero for

2
At — 0, which is physically unacceptable. Therefore to keep the mean square M [{yA (T )} } nonzero
constant when A¢ — 0, ¢ must be replaced with % ‘- This means that the amplitude of the steps in the
achievements of the random process z* (z) grows like %/E , while the area below these tends to zero as

At . It is thus highlighted that z* (t) will have the limit for Az — 0 the white noise properties.

The above-described white noise generation method can be used for computer numerical simulation of the
achievements of a random process that satisfactorily approximates the achievements of the white noise. To
this end, it is necessary to obtain a set of independent normal random variables with zero mean and square

S.(v)=S

mean 275, / At , where 0 is the spectral density of white noise, and Af it is the sampling step

of his achievements. The strings of values (the realizations themselves) corresponding to such a string of
random variables are determined using random numbers. Experience has shown that the congruence method
is best suited for generating random numbers on a computer.

According to this method, a string of random numbers v, , k=1,2,... it is given by the iterative process
Vi, = av, +b(mod P), where v, € (0,P] with k=1,2,.... in which b and P are prime numbers.

The choice of P it is done according to the capacity and numbering base of the computer. The constants are
chosen so that the correlation between the values obtained is as small as possible, the period of the string of
random numbers is as long as possible and the speed of generation of random numbers is respectively. Thus,
approximate numerical representations of the achievements of a normal stationary white noise are obtained,

the accuracy of the representation depending on the sampling step Af .
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3.3 Study of dynamic systems behavior through automatic generation of random
processes

In the study undertaken on linear dynamical systems, we considered important elements that give
particularity to random processes, among which we mention the distribution function, probability density
function, statistical moments of a random process, time averages, and correlation (and intercorrelation) of a
random signal (process).

Microsoft Excel® offers over 50 statistical functions that are useful in everyday practice. Some of these are
available immediately after installing Excel, others, the least used, can be installed on-demand using
Analysis ToolPak® (Fig. 1). However, before using an analysis tool, the data to be analyzed must be sorted
and arranged in rows or columns in the spreadsheet. These will be the input data domain. If the Data
Analysis command is not in the Tools menu then the Analysis ToolPak interface must be installed in
Microsoft Excel.

To install Analysis ToolPak, follow these steps: On the Tools menu, click Add-Ins. If Analysis ToolPak is
not listed in the Add-Ins dialog box, click the Browse button and locate the disk drive, folder, and file name
for the Analysis ToolPak add-in package, called Analys32.xll. It is usually located in the Microsoft Office \
Library \ Analysis folder. If it is not installed then run the MS Excel installer again. Select the Analysis
ToolPak checkbox. To use Analysis ToolPak, select Data Analysis from the Tools menu. In the Analysis
Tools dialog box, select the tool that you want to use. Enter the input and output range then select the desired
option.

Excel Options 2| !
Add-Inz |
1) |
@ = General !
=y View and manage Microsoft Office Add-ins. ——
i £dd-Ins avallzble:
Home Formulas e
S| (o]
[ save Anzlysis ToolPak - /BA
save A -
. Haise Lpestion Type [ |Euro Currency Toos Cancel
[ save as Active Applicat . &
Language P [ Solver Add-in
[EF Open Advanced
Inactive Application Add-ins | Browse. .
[ Close Customize Ribbon |Analysis ToolPak i\ LYS32 XL Excel Add-in =
Analysis ToolPak - VBA Ci\.AENXLAM  Excel Adc-in "
Quick Access Toolbar Custom XML Data C:\.FRHD.DLL  Document Inspector Autorration. .
Info —_—— Euro Currency Toals CLOLXLAM  Excel Adctin
. Addng Financial Symbol DML} C:\.MOFLDLL  Action
Headers and Footers Ci\.FRHDDLL  Document Inspector
Recent Trust Center Hidden Rows and Columns C\JFRHDDLL  Document Inspectar
Hidden Warksheets CA\.FRHD.DLL  Document Inspector
Invisible Content Ci\..FRHD.DLL  Document Inspector
New Micrasoft Actions Pane 3 XML Expansion Pack
Solver Add-in CA\.VERXLAM _Excel Adckin -
: Add-in: Analysis ToolPak
Print Publisher:  Microsoft Corporation
Compatibility. No compatibility information available L
Save & Send Location: CProgram Files KBENMIosoft Offce Ofcel\Lbran
nalysis\ANALYS32.XLL Analveis TooPak
Description:  Provides data analysis tools for statistical and nalysis TooPal
engineering analysis . . e
Help Provides detz anelysis toos for statistical and
B Manage: |Excel Add-ins ] engineering analysis
] Options
E Exit oK Cancel

Fig. 1. Analysis toolpak in Microsoft excel®

Below are some of the most used statistical functions. Both the statistical functions of the application and the
procedures obtained through Tools - Data Analysis can be used to process a data set stored in an Excel
document. The usual statistical functions are (in alphabetical order):

AVEDEYV - absolute mean deviation MIN, MAX - extreme values in the list
AVERAGE - arithmetic mean MEDIAN — median

BINOMDIST - binomial distribution function NORMDIST - normal distribution function
CHIDIST - distribution function x2 STDEV - standard deviation

HARMEAN - harmonic average VAR - dispersion

To use statistical procedures, you must verify with Tools - AddIns that the Analysis ToolPak utility is
installed. If so, the Tools - Data Analysis command will open the Data Analysis dialog from which a series
of statistical processing driven by the associated dialogs are accessible. Thus, Descriptive Statistics will
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produce the statistical indicators of a continuous variable. Also in the statistical description part can be
included the method of creating OLAP cubes through Data - Pivot Table, a method by which simple or
multivariate distributions of discrete variables or essential statistical indicators of subpopulations are
obtained. Also, we must not forget that all the procedures related to graphical representations, initiated by
Insert - Chart are a part of the descriptive statistical processing offering graphs, histograms, etc. The
following are several procedures available through the Tools - Data Analysis dialog.

The Random Number Generation analysis tool fills a range with independent random numbers derived from
one of several distributions. You can characterize the subjects of a population with a probability distribution.
For example, a normal distribution can be used to characterize the population of individuals' heights, or a
Bernoulli distribution of two possible consequences can be used to characterize the population of the money
experiment results.

Using this procedure, random number series can be generated distributed according to 7 different types of
distribution functions. The result consists of one or more columns of numbers, each column representing
values of a variable distributed according to a specified distribution function. For each generation, the
number of columns (variables) generated, the number of values (the same for all variables), the type of the
distribution function, the parameters of the function, and the place where the results will be entered will be
given.

To determine the normal distribution it is necessary to specify the values for the mean and the standard
deviation of the population. Mean - specify the value for the population average. Standard Deviation -
specify the value for the standard deviation of the population. The default values are those of the standard
normal distribution, the mean 0 and the standard deviation 1. In the following, for the beginning, it is
presented, by way of example, the generation by a normal distribution, with a given mean and standard
deviation, of some random data sets, using Data Analysis - Random Number Generation module.

3.3.1 Case no. 1 - mean (0) and standard deviation (1)

For the first case we will consider an average (mean) equal to 0 and a standard deviation equal to 1. At the
same time for the data set - random variables (see Fig. 2), we will propose an analysis by expressing
correlation and covariance (see Fig. 3).

C— —
Mumnber of Randam Mumbers: llﬂﬂl— Caticel | Mumber of Random Mumbers: |1001— Cancel |
=l Help | hd| Help |

Mumber of Wariables: Mumber of Wariables:

Distribution: INormaI Distribution: INormaI

rParameters
Mean =

Standard deviation =

—
—

" Mew Workbook

 Mew Worksheet Ply:

rParametet
Mean =

Standard deviation =

—
—

" New Workbook

' Mewe Worksheet Ply:

Random Seed: 10| Randam Seed: IlDDI
FOutput options ~Output options
{* Output Range: $E$4 5 % Qutput Range: $hE4 £
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Fig. 2. Random variables for 1% case - mean (0) and standard deviation (1)
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Fig. 3. Correlation and covariance of random variables for 1% case

Respectively by exposing the descriptive statistics (see Fig. 4), the histogram and the related exponential

smoothing (see Fig. 5).
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Fig. 4. The descriptive statistics of random variables for 1% case
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Fig. 5. Histogram and related exponential smoothing of random variables for 1% case

3.3.2 Case no. 2 - mean (0.5) and standard deviation (1.41)

For the second case we will consider a mean equal to 0.5 and a standard deviation equal to 1.41. At the same
time for the data set - random variables (see Fig. 6), we will propose an analysis by expressing correlation

and covariance (see Fig. 7).
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Fig. 6. Random variables for 2" case - mean (0.5) and standard deviation (1.41)

44



Cioruta; AJPAS, 8(2): 24-48, 2020; Article no.AJPAS.58836

2lx 32725 | -3.3527 | -3.2218 | -3.1967 | -3.0311 | -2.9546 | -2.8871 | -2.8283 | -2.7732 | -2.7227
Analysis Tools 32725 1
0K
[nowat Single Factor - - -33527 00086 1
[(Anowa: Two-Factor With Replication Cancel -32215 00115 00042 1
[ Anowa: Two-Factor wWithout Replication 3BT o0as 00034 00253 9
Covmriance Help 3031 00053 00167 00041 00156 1
Deseriptive Statistics 28546 00408 00057 -00364 00045 00233 1
Exponential Smocthing 28671 00078 -00M27 00073 00032 -0.0023  0.0081 1
;'Tﬁﬁﬂfﬂ'?aw‘ﬂfD'Va”ﬂ"EH -25283 00514 00081 00013 00077 00002 -00075 00142 1
H?;Q;ar;‘”“‘ = 27732 0075 00012 00444 00235 00161 00551 00150 -DO06S 1
27227 00700 00300 00107 00335 00118 00104 00147 00322 00084 1
atagnalysis 2] x| 52775 59527 52218 5.1167 50311 29546  7.5671 26285 2777 27227
Analysis Tools -32725 20776
[Enava: Single Fadtor — 33527 00178 20531
[anova: Two-Factar With Replication o 32218 D037 00034 19488
[Anova: Two-Factor Without Replication S3MET n.03as 00085 0.0a01 19239
C |t
Sl Help 30311 00108 00330 -00080 00289 19101
Desritive Shatistics 29546 0010 00113 -00703 00086 00447 19180
Exponential Smoothing 28871 00156 -00250 00140 00060 00044 00154 13924
FeTest Two-Sample for Vatiances 28283 01038 0022 -00025 00149 00004 -00146 00274 19572
;P“;"”A“E'VS“ E 27732 00358 00023 00877 00481 00MS  0M01 00293 00135 20070
Rl 27227 01330 00587 -00204 00749 00223 00196 00277 OO0RI6 -00162 15686

Fig. 7. Correlation and covariance of random variables for 2" case

Respectively by exposing the descriptive statistics (see Fig. 8), the histogram and the related exponential

smoothing (see Fig. 9).
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Fig. 9. Histogram and related exponential smoothing of random variables for 2" case
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4 Conclusions

Through this paper, we have tried to bring to the fore the implications that random processes have on the
study of the dynamic system. We started from the presentation of the basic concepts with which we are
accustomed to probability and statistics, getting to study the Markov, diffusion, Wiener and white noise
processes. The multitude of equations come to certify the preoccupation for the staging of the dynamic
systems, the transition from one process to another being done gradually, with the consideration and
maintenance of specific notations. The implications of random processes in the study of dynamical systems
are reviewed, as well as a series of applications specific to the analysis of dynamic behavior.
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