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Abstract 
 

This article proposed a new extension of the Inverse Lindley distribution called “Lomax-Inverse Lindley 
distribution” which is more flexible compared to the Inverse Lindley distribution and other similar 
models. The paper derives and discusses some Statistical properties of the new distribution which include 
the limiting behavior, quantile function, reliability functions and distribution of order statistics. The 
parameters of the new model are estimated by method of maximum likelihood estimation. Conclusively, 
three lifetime datasets were used to evaluate the usefulness of the proposed model and the results indicate 
that the proposed extension is more flexible and performs better than the other distributions considered in 
this study. 
 

 
Keywords: Inverse lindley distribution; lomax-inverse lindley distribution; statistical properties; order 
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1 Introduction  
 
Prof. D. V. Lindley investigated a probability distribution in context of fiducial statistic as a counter example 
of Bayesian theory which was later called “Lindley distribution” (Lindley [1]). The fundamental properties 
of the Lindley distribution (LIND) with application to waiting time data was discussed by Ghitany et al. [2]. 
Since then, many researchers have studied this distribution, for instance, Mazucheli and Achcar [3] worked 
on the Lindley distribution applied to competing risks lifetime data. Krishna and Kumar [4] estimated the 
parameter of Lindley distribution with progressive Type-II censoring scheme and also showed that it may be 
better lifetime model than exponential, lognormal and gamma distributions in some real life situations. Singh 
and Gupta [5] used the distribution under load sharing system models. Al-Mutairi et al. [6] developed an 
inferential procedure of the stress-strength parameter when both stress and strength variables follow Lindley 
distribution and discovered that the Lindley distribution is useful when the data show increasing failure rate. 
This particular property makes the use of Lindley distribution in lifetime data analysis more frequent than 
the exponential distribution. Despite the important properties and various applications of the Lindley 
distribution in many disciplines, its applicability may be restricted to non-monotone hazard rate data (see 
Sharma et al. [7]). To solve the above mentioned problem therefore, several extensions of the Lindley 
distribution have been proposed in the literature and some of the recent generalizations are summarized as 
follows: Zakerzadeh and Dolati [8] and Nadarajah et al. [9] introduced a three parameters extension of the 
Lindley distribution called “a generalized Lindley distribution”. Ghitany et al. [10] proposed two parameter 
generalizations of the Lindley distribution, called the power Lindley distribution which was generated using 
the power transformations to the Lindley distribution. Merovci [11] investigated transmuted Lindley 
distribution and Merovci and Elbatal [12] studied the transmuted Lindley-geometric distribution. The beta-
Lindley distribution was also introduced by Merovci and Sharma [13]. Elbatal and Elgarhy [14] studied the 
statistical and mathematical properties of Kumaraswamy Quasi-Lindley distribution and Kumaraswamy 
Lindley distribution was proposed and discussed by Akmakyapan and Kadlar [15]. The exponentiated power 
Lindley distribution has been introduced by Ashour and Eltehiwy [16] and the generalized weighted Lindley 
distribution by Ramos and Louzada [17]. 
  
The inverse Lindley distribution is a two component mixture of inverse exponential distribution and special 
case of inverse gamma distribution. From the introduction above, it can be seen that authors mainly focused 
on the Lindley distribution and little has been said about the inverse Lindley distribution. Sharma et al. [18] 
discussed the properties of inverse Lindley distribution with application to stress strength reliability analysis. 
Sharma et al. [19] introduced a two parameter extension of inverse Lindley distribution (generalized inverse 
Lindley distribution). Also, Alkarni [20] proposed a three parameter inverse Lindley distribution (extended 
inverse Lindley distribution) with application to maximum flood level data and the inverse weighted Lindley 
distribution was introduced and studied by Ramos et al. [21]. 
 
Recently, different families of distributions have been introduced, studied and used in the literature for 
instance there is Odd Lindley-G family by Gomes-Silva et al., [22], Lindley-G family by Cakmakyapan and 
Ozel [23], a new Weibull-G family by Tahir et al. [24] and a Lomax-G family by Cordeiro et al. [25] etc. 
Also, recent literature review has shown that using Lomax generator of probability distributions (Lomax-G 
family) by Cordeiro et al., [25] to add two parameters to some classical continuous distributions has led to 
compound distributions with greater degree of skewness and flexibility for modeling real life datasets (Ieren 
and Kuhe [26], Omale et al. [27], Venegas et al., [28], Ieren et al., [29]).  
 
Based on the recorded advantage of the Lomax-G family above and the desire to increase the flexibility of 
the inverse Lindley distribution, this this study seeks to extend the Inverse Lindley distribution (INLIND) 
using the Lomax generator of probability distributions (Lomax-G family) proposed by Cordeiro et al. [25] 
and hope that it will produce a better model for analyzing real life situations in various fields of study 
especially reliability analysis.  
 
The cumulative distribution function (c.d.f) and probability density function (pdf) of the Inverse Lindley 
distribution (INLIND) are defined as: 
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respectively, for 0x   and 0  where   is the scale parameter of INLIND.  
 
This article is divided in sections as follows: the new distribution is derived with its validity check and 
graphical representation in section 2. Section 3 derived some properties of the proposed distribution. The 
estimation of unknown parameters of the distribution using maximum likelihood estimation is provided in 
section 4. An application of the proposed distribution to three real life datasets is done in section 5 and the 
summary and conclusion of the study is given in section 6. 
 

2 The Lomax Inverse Lindley Distribution (LOMINLIND) 
 
2.1 Definition 
 
According to Cordeiro et al., [25], the cumulative distribution function (cdf) of the Lomax-G family of 
distributions is defined as:  
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“where ( )G x
 
is the cdf of any continuous distribution to be modified or generalized and 0   and 

0  are the two extra shape parameters of the Lomax-G family”. 

 
Solving equation (3) above and evaluating the integrand in the equation gives: 
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Hence, equation (4) is the simplified cumulative distribution function of the Lomax-G family of distributions 
proposed by Cordeiro et al., [25] and the corresponding probability density function of the family can be 

obtained from equation (4) by taking the derivative of the cdf, ( )F x  with respect to x and is obtained as:  
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“where ( )g x and ( )G x
 
represent the pdf and the cdf of any continuous distribution to be extended 

respectively”.  
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Making substitution of equation (1) and (2) in (4) and (5) above and simplifying, we obtain the cdf and pdf 
of the LOMINLIND for a random variable X as: 
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respectively, for 0; , , 0x     .  

 

2.2 Validity of the model f(x) 
 

In probability theory, a continuous probability distribution is said to be valid if and only if the following 

integral in equation (8) is true, that is 
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Proof 

 

Considering the pdf of the LOMINLIND, which is given as 
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Substituting this pdf in equation (8) above and simplifying, we have  
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Substituting for y  and dx  in (9) and simplifying, we have the following results: 
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approaches infinity, x    is equal to one (1) while its limit as X tends zero, 0x   is equal to zero (0). 
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and hence the proposed pdf of the LOMINLIND in equation (7) is a valid pdf.  
 

2.3 Graphical representation of the Pdf and Cdf of LOMINLIND 
 
The pdf and cdf of the LOMINLIND using some arbitrary parameter values are shown in Figs. 1 and 2.  
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Fig. 1. PDF of LOMINLIND 
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Fig. 2. CDF of LOMINLIND 

 

3 Mathematical and Statistical Properties of LOMINLIND 
 
3.1 Limiting behavior 
 
Under this subsection, the limiting behavior of the LOMINLIND is being investigated as follows: 
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infinity, x    is equal to zero (0), therefore simplifying equation (13) above gives: 
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





 


 

   

                                                                              (14) 

 

(ii) The limit of the pdf of the LOMINLIND, f(x) as X tends to zero (0), 0x   
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 

 

1
2

3

lim lim
0 0 1

1
1 1

1 1
( )

log 1 1
1

x x

x

x x

x
e e

x x
f x

e
x

 







 


 








 

  



                        
      

                

                         (15) 

 

Recall that 
 

1
1

xe
x




 

   
 is the cdf of the INLIND and its limit as X  tends to zero (0), 0x   is 

equal to zero (0) and also that 

2

3

1

1
x

x
e

x




 

 
  

 is the pdf of the INLIND and its limit as X  tends to zero 

(0), 0x   is equal to zero (0), therefore simplifying the equation (15) above gives: 
 

 
  
  

1

lim
0 1

1 0
( ) 0 0

log 1 0
x f x











 


 

   

                                                                              (16) 

 

Lemma 2: The limit of the cdf of the LOMINLIND, F(x) as X approaches infinity, x    is equal to one 

(1) and limit of the cdf of the LOMINLIND, F(x) as X tends to zero (0), 0x   is equal to zero (0).  
 
Proof: 
 

(i) The limit of the cdf of LOMINLIND, F(x) as X approaches infinity, x    
 

 
lim lim( ) 1 log 1 1

1
x

x xF x e
x





 
 







 

        
                     

                                   (17) 

   
lim ( ) 1 1 1

log 1 1 log 0

a a

x

b b
F x

b b


      
       

                                                         
(18) 

 

(ii) The limit of the cdf of LOMINLIND, F(x) as X tends to zero (0), 0x    
 

 
lim lim

0 0( ) 1 log 1 1
1

x

x xF x e
x





 
 







 

        
                     

                                    (19) 

 

   
lim

0 ( ) 1 1 1 1 1 0
log 1log 1 0

a a a

x

b b b
F x

b bb


        
             

                       
(20) 

 
Considering the lemma above and the proof following it, it is clear that the LOMINLIND has at least a mode 
and its pdf and cdf are valid functions.  
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3.2 Quantile function, median and simulation 
 
According to Hyndman and Fan [30], the quantile function for any distribution is defined in the form 

   1Q u F u  where  Q u  is the quantile function of F(x) for 0 1u  . 

 
To derive the quantile function of the LOMINLIND, the cdf of the LOMINLIND is considered and inverted 
according to the above definition as follows: 
 

 
( ) 1 log 1 1

1
xF x e u

x





 
 






     

                 

                                              (21)

 
 

Simplifying equation (21) above gives: 

 

     
1

1 11 1 e e e
x x

u x
x x

x



 
    




 
           

                                                       (22) 

 

From the expression above, it can be seen that 
x x

x

  
  is the Lambert function of the real argument,

     
1

1 11 1 e eu   


       
 

 because the Lambert function is defined as:    ew xw x x
 

 

Recall that the Lambert function has two branches with a branching point located at  1e ,1 . The lower 

branch,  1W x  is defined in the interval 
1e ,1    and has a negative singularity for 

10x  . The 

upper branch,  0W x , is defined for 
1e ,x      . Hence, equation (22) can be written as: 

 

     
1

1 1
1 1 e e

u x x
W

x

    



             

  
                                                          (23) 

 

Now for any 0   and  0,1u  , it follows that 1
x x

x

  
  and  

     
1

1 1
1 1 e e 0

u   


         
  

. Therefore, considering the lower branch of the Lambert function, 

equation (50) can be presented as: 
 

     
1

1 1

1 1 1 e eu x x
W

x

    



   



         
  

                                                        (24) 

 
Collecting like terms in equation (24) and simplifying the result, the quantile function of the LOMINLIND is 
obtained as: 
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       
1

1

1 1

1

1 1
1 1 1 uQ u W e e

  
 




   



             
   

                                       

(25) 

 

 

where u is a uniform variate on the unit interval (0,1) and  1 .W represents the negative branch of the 

Lambert function.  

 
Using (25) above, the median of X from the LOMINLIND is simply obtained by setting u=0.5 and this 

substitution of 0.5u  in Equation (25) gives: 
 

     
1

1

0.5 1

1

1 1
1 1 1Median W e e

  
 




  



             
   

                                    (26) 

 

Similarly, random numbers can be simulated from the LOMINLIND by setting  Q u X  and this process 

is called simulation using inverse transformation method. This means for any , , 0     and  0,1u  : 

 

     
1

1

1 1

1

1 1
1 1 1 uX W e e

  
 




   



             
   

                                              (27) 

 

“where u is a uniform variate on the unit interval (0,1) and  1 .W represents the negative branch of the 

Lambert function”. 
 
Again using the function above, the quantile based measures of skewness and kurtosis are obtained as 
follows: 
 
Kennedy and Keeping [31] defined the Bowley’s measure of skewness based on quartiles as: 
 

     
   

3 1 12
4 2 4

3 1
4 4

Q Q Q
SK

Q Q

 



                                                                                        (28) 

 

And Moors [32] presented the Moors’ kurtosis based on octiles by: 
 

       
   

7 5 3 1
8 8 8 8

6 1
8 8

Q Q Q
KT

Q Q

  



                                                                            (29) 

 

“where  .Q  is calculated by using the quantile function from equation (25). 

 

3.3 Reliability analysis of the LOMINLIND 
 
In this section, the survival (or reliability) function, the hazard (or failure) rate function, the cumulative 
hazard function, the reverse hazard function and the odds function are obtained for the LOMINLIND as 
follows: 
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The Survival function describes the probability that a unit, component or an individual will not fail after a 
given time. Mathematically, the survival function is given by: 
  

   1S x F x                                                                                                                 
(30)

  
 

Using the cdf of the LOMINLIND in (30) and simplifying the result, the survival function for the 
LOMINLIND is obtained as: 
 

 
( ) log 1 1 e

1
xS x

x




 

 





     

               

                                                           (31) 

 

The Fig. 3. is a plot for the survival function of the LOMINLIND using different parameter values.  
 

  

  

 
 

Fig. 3. Survival function of LOMINLIND
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Hazard function is also called failure rate function and it represents the likelihood that a component will fail 
for an interval of time. The hazard function is defined as: 
 

 
 
 

 
 1

f x f x
h x

S x F x
 


                                                                                                         

(32)

 
 
Making use of the pdf and cdf of LOMINLIND, an expression for the hazard rate of the LOMINLIND is 
simplified and given by: 
 

 

 

1
2

3

1
1 1

1 1
( )

log 1 1
1

x x

x

x
e e

x x
h x

e
x

 



 


 








 



    
               

     
              

                                                    (33) 

     

   where 0, , , 0x     . 

 

The following figure is a plot of the hazard function for some arbitrary parameter values. 
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Fig. 4. Hazard function of LOMINLIND 
 

The cumulative hazard function of a variable or unit is a function that generates a cumulative hazard value 
which corresponds to the sum of all the hazard values for failed units with ranks up to and including that 
failed unit. The cumulative hazard function is defined as:   
 

   
 
 

 ln
10 0

x x f t
H x h t dt dt S x

F t
    


                                                            (34) 

 

Substituting the cdf of the LOMINLIND in (34), the cumulative hazard function for the LOMINLIND is 
obtained as:  
 

 
( ) ln log 1 1 e

1
xH x

x




 

 





        

                                                        (35) 
 

The reversed hazard rate (Rh(x)) is defined as the ratio of the density function to the distribution function of 
a random variable. The reversed hazard function of a variable is mathematically defined as: 
 

 
 
 

f x
Rh x

F x
                                                                                                                            (36) 

 
Again, substituting the pdf and cdf of the LOMINLIND in (36), the reverse hazard function of the 
LOMINLIND is expressed as: 
 

 
 

   

1
2

3

1
e log 1 1 e

1 1

1 1 e log 1 1 e
1 1

x x

x x

x

x x
Rh x

x x

 


 



 


 

 
 

 



 

 

       
                  

                                                

              (37) 
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The odds function of a random variable X is a measure of the ratio of the probability that the variable or unit 
will survive beyond x to the probability that it will fail before x. It is obtained by dividing the cdf by the 
reliability (survival) function. That is: 
 

 
 
 

 
 1

F x F x
O x

F x S x
 


                                                                                                               (38) 

 

Using the cdf of the LOMINLIND in (38), the odds function for the distribution is given as: 
 

 
 

log 1 1
1

xO x e
x





 
  




                         

                                                      (39) 

 

where 0, , , 0x     .    
 

3.4 Order statistics 
 

Suppose 1 2, ,....., nX X X  is a random sample from the LOMINLIND and let 1: 2: :, ,.....,n n i nX X X  denote 

the corresponding order statistic obtained from this same sample. The pdf, ��:�(�) of the ith order statistic can 
be obtained by: 
 

                      
1

:
0

!
( ) ( )( 1) ( )

( 1)!( )!

n i
k k i

i n
k

n in
x f xf F x

ki n i


 



 
   

   
                                                   (40) 

 

Using (6) and (7), the pdf of the ith order statistics��:�, can be expressed from (40) as: 
 

 

 
 

1

1
2

3

1:
0

1
1 1 e

1 1!
( )

( 1)!( )!
log 1 1 e

1

1( 1)

log 1 1
1

x

i k

x

n i k

i n
k

x

x
e

x xn in
x

ki n i

x

f

x

 





 


 













 












                         
                          


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(41) 

 

Hence, the pdf of the minimum order statistic �(�) and maximum order statistic �(�) of the LOMINLIND are 

respectively given by: 
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4 Maximum Likelihood Estimation of the Unknown Parameters of the 
LOMINLIND 

 
Let nXXX .,,........., 21  be a sample of size ‘n’ independently and identically distributed random variables 

from the LOMINLIND with unknown parameters,  ,   and   
defined previously.  

 
The likelihood function of the LOMINLIND using the pdf in equation (7) is given by: 
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Let the natural logarithm of the likelihood function be,    log | , ,l L X   
, 

therefore, taking the 

natural logarithm of the function above gives: 
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Differentiating  l   partially with respect to  ,   and   respectively gives the following results:  
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(48) 

 
Making equation (46), (47) and (48) equal to zero (0) and solving for the solution of the non-linear system of 

equations produce the maximum likelihood estimates of parameters
  ,   and  . However, these 

solutions cannot be obtained manually except numerically with the aid of suitable statistical software like R, 
SAS, MATHEMATICA e.t.c.  
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5 Applications to Lifetime Datasets 
 
In this section, we present three real life datasets, their summary and applications. The section also fits the 
proposed distribution (LOMINLIND) together with other three models which include Inverse Lindley 
distribution (INLIND), Lindley distribution (LIND) and the Lomax distribution (LOMD) to the three 
lifetime datasets. The density functions of these distributions are given as: 
 

5.1 Lomax Inverse Lindley Distribution (LOMINLIND) 
 

The pdf of the LOMINLIND distribution is given as: 
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                                              (49) 

 

5.2 The Inverse Lindley Distribution (INLIND)  
 
The pdf of the INLINDD is given as: 
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5.3 The Lindley Distribution (LIND) 
 
The pdf of the LIND is given as: 
 

                      

 
2

( ) 1
1

x
f x x e






 

  

                                                                                                  (51)  

 

5.4 The Lomax Distribution (LOMD) 
 
The pdf of the LOMD is given as: 
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To evaluate and compare the above stated distributions, some model selection criteria which include the 
value of the log-likelihood function evaluated at the maximum likelihood estimates (ℓ), Akaike Information 
Criterion, AIC, Consistent Akaike Information Criterion, CAIC, Bayesian Information Criterion, BIC, 
Hannan Quin Information Criterion, HQIC, Anderson-Darling (A*), Cramѐr-Von Mises (W*) and 
Kolmogorov-smirnov (K-S) statistics are being considered. The details about the statistics A*, W* and K-S 
are discussed in Chen and Balakrishnan [33]. Some of these statistics are computed with the following 
formulas: 
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and  2 2 log logHQIC k n     

 
Where ℓ denotes the value of log-likelihood function evaluated at the MLEs, k is the number of model 
parameters and n is the sample size. Note, when taking our decisions it is considered that any model with the 
lowest values of these statistics to be the best model that fit the dataset. The required computations are 
carried out using the R package “AdequacyModel” from R Core Team [34] which is freely available from 
http://cran.r-project.org/web/packages/AdequacyModel/AdequacyModel.pdf. 
 
Table 2 (for dataset I), 6 (for dataset II) and 10 (for dataset III) list the Maximum Likelihood Estimates of 
the model parameters whereas the statistics AIC, CAIC, BIC, HQIC, A*, W* and K-S for the fitted 
LOMINLIND, INLIND, LIND and LOMD models are given in Tables 3 & 4 for dataset I, 7 & 8 for dataset 
II and 11&12 for dataset III respectively.  
 
Data set I: This data set represents the relief times (in minutes) of 20 patients receiving an analgesic 
reported by Gross et al. [35] and has been used by shanker et al. [36] and Ieren et al., [37]. Its values are 
given as follows: 1.1,  1.4,  1.3,  1.7,  1.9,  1.8,  1.6,  2.2,  1.7,  2.7,  4.1, 1.8,  1.5,  1.2,  1.4,  3.0,  1.7,  2.3,  
1.6,  2.0.  The summary of the data set is provided in Table 1. 
 

Table 1. Summary statistics for the dataset I 
 

N Minimum 
1Q  Median 

3Q  Mean Maximum Variance Skewness Kurtosis 

20 1.10 1.475 1.70 2.05 1.90 4.10 0.4958 1.8625 7.1854 
                                                                                                                                                                              

 
 

Fig. 5. A graphical summary of dataset I 
 
Considering the summary statistics in Table 1 and the histogram, box plot, density and normal Q-Q plot in 
Fig. 5, it is clear that dataset I is positively skewed. 
 
Dataset II: This data set represents the strength of 1.5cm glass fibers initially collected by members of staff 
at the UK national laboratory. It has been used by Afify and Aryal [38], Barreto-Souza et al. [39], 
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Bourguignon et al. [40], Oguntunde et al. [41], Ieren and Yahaya [42] as well as Smith and Naylor [43].  Its 
summary is given as follows:  
 

Table 2. Maximum likelihood parameter estimates for dataset I 
 
Distribution ̂  ̂  ̂  

LOMINLIND 7.6010832  4.2489000  0.1061194  
INLIND  2.254666  - - 
LIND 0.8158912  - - 
LOMD - 5.636623  9.689862  

 

 
 

Fig. 6. Histogram and plots of the estimated densities and cdfs of the fitted distributions to dataset I 
 

 
 

Fig. 7. Probability plots for the fit of the LOMINLIND, INLIND, LIND & LOMD based on dataset I 
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Table 3. The statistics ℓ, AIC, CAIC, BIC and HQIC for dataset I 
 

Distribution ̂  AIC CAIC  BIC  HQIC Ranks 

LOMINLIND 16.39677  38.79354  40.29354  41.78073  39.37667  1st  
INLIND  31.75719  65.51438  65.73661  66.51012  65.70876  3rd  
LIND 30.24955  62.4991  62.72132  63.49483  62.69348  2nd  
LOMD 34.38269  72.76537  73.47126  74.75684  73.15413  4th  

 
Table 4. The A*, W*, K-S statistic and P-values for dataset I 

 
Distribution A* W* K-S P-Value (K-S) Ranks 
LOMINLIND  0.289549  0.04939996  0.099046  0.9895  1st  
INLIND  0.2711856  0.04666718  0.36946  0.008507  2nd  
LIND 0.6757989  0.1140868  0.39096  0.004424  3rd  
LOMD  0.5486187   0.09268843   0.45452  0.0005155   4th  

 
Table 5. Summary statistics for dataset II 

 
n Minimum 

1Q  Median 
3Q  Mean Maximum Variance Skewness Kurtosis 

63 0.550 1.375 1.590 1.685 1.507 2.240 0.105 -0.8786 3.9238 
  

 
 

Fig. 8. A graphical summary of dataset II 
 
Based on the summary statistics in Table 5 and the plots in Fig. 8 it can be seen that the second dataset 
(dataset II) is negatively skewed or skewed to the left. 
 
Dataset III: Actuarial Science (Mortality Deaths) data. 
 
This third dataset represents 280 observations on the age of death (in years) of retired women with 
temporary disabilities. These dataset has been studied by Balakrishnan et al. [44]. It is important for the 
Mexican Institute of Social Security (IMSS) to study the distributional behavior of the mortality of retired 
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people on disability because it enables the calculation of long and short term financial estimation, such as the 
assessment of the reserve required to pay the minimum pensions. 
 
The data corresponding to lifetimes (in years) of retired women with temporary disabilities who died during 
2004 and which are incorporated in the Mexican insurance public system are: 22, 24, 25(2), 27, 28, 29(4), 
30, 31(6), 32(7), 33(3), 34(6), 35(4), 36(11), 37(5), 38(3), 39(6), 40(14),41(12), 42(6), 43(5), 44(7), 45(10), 
46(6), 47(5), 48(11), 49(8), 50(8), 51(8), 52(14), 53(10), 54(13), 55(11), 56(10), 57(15), 58(11), 59(9), 
60(7), 61(2), 62, 63, 64(4), 65(2), 66(3), 71, 74, 75, 79, 86. Its summary is given as follows: 
 

Table 6. Maximum likelihood parameter estimates for dataset II 
 

Distribution ̂  ̂  ̂  

LOMINLIND 8.53537822  7.91781787  0.06757877  
INLIND  1.897071  - - 
LIND 0.9964413  - - 
LOMD - 7.109656  9.882660  

  
Table 7. The statistics ℓ, AIC, CAIC, BIC and HQIC for dataset II 

 
Distribution ̂  AIC CAIC  BIC  HQIC Ranks 

LOMINLIND 25.02074  56.04148  56.44148  62.51813  58.59296  1st  
INLIND  87.28032  176.5606  176.6252  178.7195  177.4111  3rd  
LIND 82.58534  167.1707  167.2352  169.3296  168.0212  2nd  
LOMD 94.55355  193.1071  193.3038  197.4249  194.8081  4th  

 
Table 8. The A*, W*, K-S statistic and P-values for dataset II 

 
Distribution A* W* K-S P-Value (K-S) Ranks 
LOMINLIND  3.255563  0.5960105  0.15256  0.1017  1st  
INLIND  4.94591  0.9156447  0.46846  1.264e-12  3rd  
LIND 3.078766  0.562949  0.38882  7.887e-09  2nd   
LOMD 3.393551  0.6209432  0.42783  1.337e-10  4th  

 

 
 

Fig. 9. Histogram and plots of the estimated densities and cdfs of the fitted distributions to dataset II 
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Fig. 10. Probability plots for the fit of the LOMINLIND, INLIND, LIND & LOMD based on dataset II 
 

Table 9. Descriptive statistics for dataset III 
 

n Minimum 
1Q  Median 

3Q  Mean Maximum Variance Skewness Kurtosis 

280 22.00 40.00 49.00 55.25 47.79 86.00 108.63 0.06703 0.0524 
 

 
 

Fig. 11. A graphical summary of dataset III 
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Again, the descriptive statistics in Table 9 and the histogram, box plot, density and normal Q-Q plot in Fig. 
11 reveal that the third dataset (dataset III) is approximately normal and is not a skewed dataset. 
 

Looking at the tabulated values of the different model selection criteria, AIC, CAIC, BIC, HQIC, A*, W* 
and K-S given in Tables 3 and 4 as well as 7 and 8 for dataset I and II respectively, one can clearly see that 
the LOMINLIND has the least AIC, CAIC, BIC, HQIC, A*, W* and K-S values for dataset I and II which 
are positively and negatively skewed respectively. Also, the histogram for the datasets with fitted probability 
density functions and estimated cumulative distribution functions shown in Figs. 6 and 9 for dataset I and II 
respectively as well as the Q-Q plots in Figs. 7 and 10 for dataset I and II respectively confirm that the 
LOMINLIND fits the two datasets better than the INLIND, LIND and LOMD irrespective of the difference 
in the nature of the datasets which shows that it is more flexible compared to the other three distributions 
(INLIND, LIND and LOMD).  
 

Table 10. Maximum likelihood parameter estimates for dataset III 
 

Distribution ̂  ̂  ̂  

LOMINLIND 9.331296  4.784396  7.968393  
INLIND  7.051431  - - 
LIND 0.0410294  - - 
LOMD - 0.5294455  9.1751334  

  

Table 11. The statistics ℓ, AIC, CAIC, BIC and HQIC for dataset III 
 

Distribution ̂  AIC CAIC  BIC  HQIC Ranks 

LOMINLIND 1574.222  3154.444  3154.531  3165.348  3158.818  3rd   
INLIND  1678.924  3359.847  3359.862  3363.482  3361.305  4th  
LIND 1266.843  2535.686  2535.7  2539.321  2537.144  1st   
LOMD 1573.152  3150.304  3150.347  3157.574  3153.22  2nd  

 

Table 12. The A*, W*, K-S statistic and P-values for dataset III 
 

Distribution A* W* K-S P-Value (K-S) Ranks 
LOMINLIND  4.515244  0.7927554  0.51192  2.2e-16  3rd  
INLIND  4.190734 0.7375098  0.7864  2.2e-16  4th  
LIND 2.654785  0.4713172  0.33796  2.2e-16  1st  
LOMD 3.969601  0.6999846  0.50848  2.2e-16  2nd  

 

 
 

Fig. 12. Histogram and plots of the estimated densities and cdfs of the fitted distributions to dataset III 
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Fig. 13. Probability plots for the fit of the LOMINLIND, INLIND, LIND & LOMD based on dataset 
III 

 
Based on the results for the two datasets above, it is true that the Lomax generator of distributions by 
Cordeiro et al., [25] has the capacity to increase the flexibility of continuous probability models just as 
previously reported by other authors such as Venegas et al., [28], Omale et al. [27], Ieren et al., [29] as well 
as Ieren and Kuhe [26].  
 
Now, in Tables 11 and 12 for dataset III, the result is the opposite of what is obtained in dataset I and dataset 
II and this is because the third dataset (dataset III) is approximately normal. Similarly, the histogram for the 
dataset (dataset III) with fitted probability density functions and estimated cumulative distribution functions 
shown in Fig. 12 as well as the Q-Q plots in Fig. 13 confirm that the LOMINLIND is not a good model for 
the third data (dataset III) because it is not a skewed data and this also prove the fact that the Lomax 
generator of distributions by Cordeiro et al., [25] produces distributions with high degree of skewness 
compared to their conventional counterparts. 
 

6 Summary and Conclusion 
 
This article proposed Lomax-Inverse Lindley distribution (LOMINLIND) which becomes an extension of 
the Inverse Lindley distribution with a study of its properties such as Limiting behavior, quantile function for 
calculation of median and simulation, survival function, hazard function with related features and 
expressions for the distribution of minimum and maximum order statistics. The parameters of the proposed 
distribution have been estimated using the method of maximum likelihood estimation. The graphs of the pdf 
of the distribution show that it is skewed and that its shape depends on the values of the parameters. Also, 
the plots of the survival function implies that the function is decreasing, that is, the distribution could be 
used to model age-dependent or time-dependent events or variables (where probability of survival decreases 
as time advances or where survival rate decreases with increase in age or time). Also, the hazard rate of the 
distribution is always unimodal and this repeated unimodal shape shows that the new distribution would be a 
flexible model for survival analysis of events whose failure rate increases exponentially at first and then 
slowly decreases with time in the end. Three lifetime datasets were used to check the usefulness and 



 
 
 

Ieren et al.; JAMCS, 34(3): 1-27, 2019; Article no.JAMCS.52496 
 
 
 

25 
 
 

applicability of the new distribution and based on the results of the applications, it was found that the 
Lomax-Inverse Lindley distribution is more appropriate for skewed datasets compared to the Inverse 
Lindley, Lindley and Lomax distributions and could be used as an alternative in real life situations. 
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