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Abstract: Finding evidence of extraterrestrial life would be one of the most profound scientific
discoveries ever made, advancing humanity into a new epoch of cosmic awareness. The Venus
Life Finder (VLF) missions feature a series of three direct atmospheric probes designed to assess
the habitability of the Venusian clouds and search for signs of life and life itself. The VLF missions
are an astrobiology-focused set of missions, and the first two out of three can be launched quickly
and at a relatively low cost. The mission concepts come out of an 18-month study by an MIT-led
worldwide consortium.

Keywords: Venus; space missions; astrobiology

1. The Venus Opportunity

The concept of life in the Venus clouds is not new, having been around for over half a
century (e.g., [1–7]). What is new is the opportunity to search for habitable conditions or
signs of life directly in the Venus atmosphere with scientific instrumentation that is both
significantly more technologically advanced and greatly miniaturized since the last direct
in situ probes to Venus’ atmosphere in the 1980s.

The idea of life in the Venus atmosphere is highly controversial. The Venus cloud
environment is very harsh for life of any kind. The clouds are composed of concentrated
sulfuric acid (H2SO4) particles that are orders of magnitude more acidic than the most
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acidic environments where life is found on Earth. The cloud layers are about 50 to 100 times
drier than the Atacama Desert, one of the driest places on Earth and far drier than the limits
of life as we know it [5,8]. Whether or not Venus had ancient water oceans where life as we
know it could have originated and later migrated to and evolved in the clouds is under
debate [9–11].

Nonetheless, Venus is a compelling planet to search for signs of life because of: the
habitable temperatures in the cloud layers; the many atmospheric chemical anomalies
suggestive of unknown chemistry (Figure 1 and [12]); and new laboratory experiments on
organic chemistry in sulfuric acid [13].
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Figure 1. Schematic of Venus’ atmosphere. The cloud cover on Venus is permanent, continuous, and
vertically extensive. The middle and lower cloud layers have temperatures suitable for life. Selected
molecules relevant to habitability or life and with unexplained presence or vertical abundances are
shown. Atom colors are as follows: H = white; C = grey; P = orange; O = red; N = blue; S = yellow.
Figure adapted from [5].

The VLF series of missions (described in [14] and in companion papers in the same
issue [15–17]) are directly formulated to assess the habitability of Venusian clouds and
to search for signs of life and life itself (Table 1). The VLF missions are a focused set of
missions for which the first two can be launched quickly and executed with relatively low
cost. While NASA and ESA have recently selected missions to visit Venus at the end of
the 2020s (VERITAS [18], DAVINCI [19], and EnVision [20]), these missions are for general
studies about the planet’s properties and do not address the habitability and astrobiology
questions targeted by the VLF missions.
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Table 1. Summary of VLF mission concepts, science goals, objectives, and instruments. Instruments:
TLS = Tunable Laser Spectrometer, MoOSA = Molybdenum Oxide Sensor Array, TOPS = Tartu
Observatory pH Sensor, MEMS = Microelectromechanical Systems, MEMS-A = MEMS Aerosol Ele-
mental Analyzer, MEMS-G = MEMS Gas Molecule Analyzer, AFN = Autofluorescing Nephelometer,
LDMS = Laser Desorption Mass Spectrometer, FSC = Fluid-Screen Concentrator, AMP = Autoflu-
orescing Microscope System. Missions: RL = Rocket Lab Mission, HAB = VLF Venus Habitability
Mission, VAIHL = VLF Venus Airborne Investigation of Habitability and Life Mission. See also [14]
and companion VLF papers in the same Special Issue [15–17].

Goals Science Objectives Instruments Mission Concept

H
ab

it
ab

il
it

y

1.1 Determine the amount of
water in the cloud layers TLS and Conductivity Sensor HAB, VAIHL

1.2 Determine the pH of single
cloud particles

MoOSA and TOPS
acidity sensors HAB, VAIHL

1.3 Determine and identify
metals and other nonvolatile
elements in the cloud particles

MEMS-A, LDMS HAB, VAIHL
1. Measure Habitability
Indicators

1.4 Measure the temperature,
pressure, and wind speed as a
function of altitude

Temperature and pressure
sensor, anemometer HAB, VAIHL

B
io

si
gn

at
ur

es

2.1 Search for signs of life via
gas detection TLS and MEMS-G HAB, VAIHL

2.2 Detect organic material
within the cloud particles AFN, FSC with AMP RL, HAB, VAIHL

2.3 Identify organic material
within the cloud particles AFN, MEMS-A, LDMS HAB, VAIHL

2. Search for Evidence of
Life in the Venusian Clouds

2.4 Detect and characterize
morphological indicators
of life

FSC with AMP VAIHL

Sa
m

pl
e

R
et

ur
n

3.1 Determine if the cloud
particles are liquid or solid AFN RL, HAB, VAIHL3. Characterize Cloud

Particles in Preparation for
Sample Return 3.2 Determine if the cloud

particles are homogeneous
AFN, acidity sensors,
MEMS-A, LDMS RL, HAB, VAIHL

Remarkably, it has been nearly 40 years since the last Venus in situ measurements.
The Soviet Union’s missions including landers and two balloons flew from the late 1960s
through the early 1980s and the US Pioneer Venus probes flew in 1978. The entire scientific
field of Astrobiology has sprung up in the interim. The VLF missions to Venus will take
advantage of an opportunity for focused and high-reward science, which stands to possibly
answer one of the greatest scientific mysteries of all, and in the process pioneer a new
model of public–private partnership in space exploration.

2. New Findings for Life’s Survival on Venus

The VLF mission team set out to take a fresh look at whether the harsh atmospheric
conditions at Venus could be suitable for single-celled microbial life. Of particular interest
are the scarcity of water in the atmosphere and the extreme acidity of the sulfuric acid
cloud droplets. We designed and performed chemistry and biology experiments to guide
mission science objectives related to habitability and the search for life.

First, we set out to show that the highly acidic droplets can support organic chemistry
and are not necessarily sterile “dead” zones from an organic chemistry perspective. The
team seeded test tubes of concentrated sulfuric acid with simple organic molecules. The
result was an intriguing rich and complex set of organic molecules. What this shows is
that sulfuric acid droplets can support a variety of complex chemicals that can in principle
lead to the formation of the building blocks of exotic biochemistry based on concentrated
sulfuric acid [13]. Such results are very intriguing because all life needs complex organic
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chemistry. This result is also seen in the petrochemical industry where “red oil” is a waste
byproduct of fuel production.

Second, we aimed to find life biochemical materials that could survive in concentrated
sulfuric acid. Although sulfuric acid is known to be destructive to many biochemicals
and engineering materials, there are some that are resistant. We discovered a set of lipids
that can not only survive in sulfuric acid (tested at concentrations of 70% or lower) but
can self-assemble to form vesicle-like structures (described in [14] Appendix A). More
work is needed to determine the membrane permeability and other chemical properties. A
membrane is critical to protect life’s biochemicals from the outside environment.

Third, we propose that locally and biologically produced ammonia (NH3) can neutral-
ize the Venus sulfuric acid cloud droplets such that a subset of the cloud particles may be
brought to an acidity level tolerable by acidophiles on Earth [21]. Concentrated sulfuric
acid is billions of times more acidic than the most acidic environment that is inhabited by
life on Earth. Yet with NH3 neutralization, the Venus cloud particles will be brought to
about pH = 0 or 1. This theory is motivated by the suggested presence of NH3 by both
Venera 8 [22] and the Pioneer Venus probe measurements [23] and leads to a cascade of
reactions that help resolve long-standing Venus atmosphere anomalies [21]. The anomalies
include: the large particles, called “Mode 3”, in the lower cloud layers that appear to be
non-spherical and therefore cannot be pure concentrated sulfuric acid which is a liquid
that would form spherical droplets; the gas O2 found at significant levels (10s of ppm);
depletion of SO2 and H2O in the cloud layers; and the possible presence of NH3. On Earth,
co-occurring NH3 and O2 are only associated with life as both gases require continuous
and efficient production in significant amounts to offset their reactivity in the atmosphere
(see e.g., [24,25]). This new theory that life-produced NH3 sets off a chain of reactions that
explains Venus’s atmosphere anomalies may be countered by the idea of unknown chemical
processes at play for each individual anomaly. One such possibility is that the SO2 depletion
alone could be explained by cloud droplet chemistry and acid neutralization by minerals
lofted from the surface if such minerals reach the clouds in sufficient abundance [26]. New
chemistry itself is of significant interest to planetary science.

Based on the above three points, our mission priorities include the search for organic
compounds in the cloud particles, the measurement of the acidity of the cloud particles,
and a sample return to search for cell-like structures and complex organic biopolymers. In
addition, the missions will search for biosignature gases and other indicators of habitability
or life.

3. A Small Venus Atmosphere Probe for a Targeted 2023 Launch

We partnered with Rocket Lab such that the VLF team will provide the science payload
and science team for a mission to Venus with a target launch date of May 2023, and a backup
launch date of January 2025. Rocket Lab is providing the Electron launch vehicle, the cruise
phase Photon spacecraft, and the atmospheric probe entry vehicle. The entry vehicle flying
aboard Rocket Lab’s Photon spacecraft on a direct entry to Venus has room for up to 1 kg
of scientific instrumentation for the short-duration (three-minute) descent through the
cloud layers.

The primary science goal is to search for organic compounds in Mode 3 or other cloud
particles. A discovery of organic compounds would show that complex molecules suitable
for life could exist. If life is present, it is most likely microbial-type life residing inside the
cloud particles. This first probe mission would not be able to identify such life but could
indicate the presence of organic molecules. Organic compounds with delocalized electrons
in ring structures, when subjected to UV light, yield stronger fluorescent signals compared
to other molecules.

The science instrument is the Autofluorescing Nephelometer (AFN). The AFN will
shine a UV laser through a probe window to induce autofluorescence in any organic
material inside cloud particles. If there is no autofluorescence detected, the AFN will still
return useful science by the secondary science goal. A measurement of the intensity of
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the laser light and polarization backscattered off of the particles will be used to constrain
the composition and shape of the particles. If we can confirm past measurements that
indicate some cloud particles are non-spherical, i.e., not liquid, it affirms the possibility
that some particles are not made of liquid concentrated sulfuric acid and therefore could be
more habitable to life as we know it than previously thought. The non-spherical particles
would represent a currently unknown composition, including the possibility of biologically
produced ammonium salt slurries [21,27].

The AFN is being built by Droplet Measurement Technologies (DMT) and has a high
heritage via DMT’s commercial products that fly on the outside of aircraft. The backscatter
cloud probe (BCP) [28] has over 60,000 h of data acquired on a global basis [29]. The BCP
was subsequently upgraded to include the detection of polarization, and the AFN takes
this further by the addition of a fluorescence detection channel. The laboratory tests on
AFN detection of fluorescence of organic compounds, including potential contaminants
and mineral “false positives”, are currently underway and are aimed to guide the data
analysis and interpretation. Contamination from the probe heat shield (carbon phenolic)
will be avoided by probing particles outside of the ablation airflow. However, extensive
laboratory testing of many different types of particle compositions related to the expected
ablation products will be carried out.

The Venus atmospheric entry probe will spend approximately three minutes in the
cloud layers, after being deployed from the Photon spacecraft, and will make continuous
measurements with the AFN, as well as obtain the pressure, altitude, and inferred tempera-
ture profile of the atmosphere. The choice of the AFN delivers new science and is unique as
compared to the recently selected NASA and ESA missions because none of these missions
intentionally include in situ studies of Venus cloud particles.

4. A Balloon Mission to Establish Habitability and Search for Signs of Life

Our VLF Venus Habitability Mission concept is a 4 m diameter fixed-altitude balloon
mission to the Venus cloud layers that will use a tailored set of small instruments to search
for habitability and signs of life (Figure 2). The mission philosophy is to develop a near-term
implementable mission.
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Figure 2. Balloon mission entry, descent, and deployment concept of operations. The 52 km fixed-
altitude balloon mission is planned to be operational for one week and communicate both through
an orbiter as well as direct communication to Earth. Mini probes will be deployed to sample the
atmosphere below 52 km.

The fixed altitude balloon would operate for one to two weeks in the middle to lower
cloud region, at about 48 to 52 km altitude where the temperature is habitable (between
~87 ◦C and ~37 ◦C respectively [30]). The operational altitude of choice of 52 km is based
on temperature, the presence of the population of Mode 3 particles identified by the Pioneer
Venus probe [31–33], and the anomalous gas abundances (Section 2) [12]. Passive altitude
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variation due to updrafts, downdrafts, and thermal effects as well as horizontal variation
due to winds, will enable the measurement of spatial distributions of gases. The mission
will deploy four mini probes from the balloon gondola to sample lower cloud layers.

The mission will: support or refute evidence for signs of life in the Venus cloud
layers; ascertain the habitability of the Venusian clouds or lack thereof; and inform an
atmospheric sample return (by determining cloud particle phase and homogeneity and
balloon technology demonstration). The science payload has a mix of mature and novel
instruments chosen to achieve the science goals, summarized as follows.

A four-channel mini Tunable Laser Spectrometer (TLS) will measure the abundances
of key biosignature gases: O2, NH3, and PH3, and the habitability indicator H2O.

An Autofluorescence Nephelometer (AFN) with UV excitation capability will measure
backscattered polarized radiation and any induced fluorescence. The AFN is a power-
hungry instrument, with a peak operating power of 40 W, but it is small (~100 cm3) and
lightweight (~800 g) [16]. The AFN will be enhanced in capability compared to the Rocket
Lab Mission AFN, by way of additional excitation lasers and a broader wavelength range
detector. The AFN will also utilize an inlet to enable operation during night or day, whereas
during the initial probe mission, the need to measure particles external to the probe requires
a night entry.

A microelectromechanical systems (MEMS) device to detect non-volatile elements
including metals, which are needed for all life as we know it to catalyze metabolic reac-
tions [34,35]. The MEMS device will be tailored to elements of interest.

A single particle acidity sensor will investigate the hypothesis that cloud particles may
have acidities of pH = 1. A measurement of pH = 1 would be a major discovery because
pH = 1 is consistent with the environment for acidophiles on Earth whereas the acidity of
concentrated sulfuric acid is orders of magnitude lower and destructive to all life as we
know it. As part of this study we motivated the development of two independent single-
particle pH sensors (e.g., based on the modified molybdenum oxide senor [36], see also [17]
for an overview of the instruments considered for the VLF Venus Habitability Mission).

A weather instrument suite will measure temperature–pressure profiles and wind
speed. While not directly astrobiological in nature, these are worth measuring in their own
right. Transient planet gravity waves are encoded in the temperature–pressure profiles
(e.g., [37]), and measuring them helps substantiate the concept of transporting materials,
including those which might support the cycling of organic carbon and possibly life, up
from lower atmosphere layers.

Four mini probes will be deployed from the balloon gondola to sample atmosphere
layers below 52 km. Two mini probes would contain a pH sensor and two mini probes
would contain a MEMS gas detector. Each would also contain the weather instrument suite.

The total balloon mass, i.e., the balloon envelope (15 kg) together with the gondola
carrying the science payload and mini probes (30 kg), would be about 45 kg.

During the study, we considered a number of trades, including a variety of scientific
instruments and two balloon categories. A fixed altitude balloon is simpler and less costly
than a variable altitude balloon (up to a factor of five). Many of the desired instruments do
not fit with the small balloon payload mass and need more development time to mature to
flight readiness. For example, a laser desorption mass spectrometer is a powerful tool for
the non-pyrolyzed identification of a wide variety of compounds [38,39]. A Fluid-Screen
particle concentrator can capture enough particles for a microscope focal plane [40]. A
liquid collector to feed a mass spectrometer and a microscope have to be developed and so
far there is no suitable microscope for a balloon-borne platform that can reach down to the
desired 0.2 µm minimum cell size for life.

As an alternative to a mission consisting of a balloon and mini probes, future work
will develop a mission concept with two large identical probes with parachutes that might
spend up to an hour descending through the cloud layers with the same instrument suite
described above.
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5. A Venus Atmosphere Sample Return

Ultimately a Venus atmosphere sample return is needed to robustly answer the com-
pelling question, “Is there life in Venus’ clouds?” The VLF Atmosphere Sample Return
Mission aims to return up to one liter of gas and up to a few grams of cloud particles
(Figure 3). The target cloud altitude region for sample collection will be informed by the
results of both the Rocket Lab entry probe mission (Section 3) as well as the VLF Venus
Habitability Mission (Section 4). A sample return without a doubt is the most robust
way to search for signs of life or life itself in Venus’ atmosphere. Earth-based laboratories
include a wider variety of sophisticated tools with higher sensitivity than space-based
instrumentation, and the presence of human investigators allows for a vastly wider range
of potential experiments.
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Prior to a sample return, we need to invest in sample capture and storage technologies.
We need to understand whether or not a subset of the Venus cloud particles are solids
vs. liquids because this informs the sample capture methods. We also need to investigate
the homogeneity of cloud material in order to determine the viability of storing particles
en masse. (Storing particles en masse, instead of individually, might change the chem-
ical composition of the sample and obfuscate the true chemical environment of Venus’
cloud particles).

A cost-effective balloon-borne mission to Venus will be able to establish the limits
of habitability of the Venusian atmosphere and search for signs of life, as well as test
technology needed for sample return. We have several international partners interested in
joining our balloon mission team.

We recommend investment in technology for a sample return mission, specifically gas
and liquid capture and storage technologies.

6. Summary

Collectively, our suite of three Venus astrobiology missions offers a focused high-
impact route to seeking life beyond Earth, possibly enabling a truly historic first discovery.
The near-term Rocket Lab entry probe mission offers the potential to uncover a smoking
gun with regard to Venus cloud habitability at low cost while enabling instrumentation
validation and team building that would support a more ambitious balloon mission. Both
of these missions would precede and complement planned NASA and ESA missions while
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laying the groundwork for a Venus atmospheric sample return mission. Even if no life
is present, current evidence suggests that we have much to learn about this extremely
alien world.

Author Contributions: Conceptualization, S.S., J.J.P., C.E.C., D.H.G., B.L.E., S.J.S., R.A., W.P.B.,
M.U.W., R.F., P.K., S.P.W., D.B.; writing—original draft preparation, S.S., J.J.P.; writing—review and
editing, S.S., J.J.P., C.E.C., D.H.G., B.L.E., S.J.S., R.A., W.P.B., M.U.W., R.F., P.K., S.P.W., D.B., Venus Life
Finder Mission Team; All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by Breakthrough Initiatives, the Change Happens
Foundation, and the Massachusetts Institute of Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank the extended Venus Life Finder Mission team for useful discussions.
List of the individuals involved as the VLF extended Venus Life Finder Mission team can be found
here: https://venuscloudlife.com/, accessed on 14 May 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Morowitz, H.; Sagan, C. Life in the clouds of venus? Nature 1967, 215, 1259–1260. [CrossRef]
2. Limaye, S.S.; Mogul, R.; Smith, D.J.; Ansari, A.H.; Słowik, G.P.; Vaishampayan, P. Venus’ Spectral Signatures and the Potential for

Life in the Clouds. Astrobiology 2018, 18, 1181–1198. [CrossRef]
3. Schulze-Makuch, D.; Grinspoon, D.H.; Abbas, O.; Irwin, L.N.; Bullock, M.A. A sulfur-based survival strategy for putative

phototrophic life in the Venusian atmosphere. Astrobiology 2004, 4, 11–18. [CrossRef] [PubMed]
4. Izenberg, N.R.; Gentry, D.M.; Smith, D.J.; Gilmore, M.S.; Grinspoon, D.H.; Bullock, M.A.; Boston, P.J.; Słowik, G.P. The Venus Life

Equation. Astrobiology 2021, 21, 1305–1315. [CrossRef]
5. Seager, S.; Petkowski, J.J.; Gao, P.; Bains, W.; Bryan, N.C.; Ranjan, S.; Greaves, J. The venusian lower atmosphere haze as a

depot for desiccated microbial life: A proposed life cycle for persistence of the venusian aerial biosphere. Astrobiology 2021, 21,
1206–1223. [CrossRef]

6. Cockell, C.S. Life on venus. Planet. Space Sci. 1999, 47, 1487–1501. [CrossRef]
7. Kotsyurbenko, O.R.; Cordova, J.A.; Belov, A.A.; Cheptsov, V.S.; Kölbl, D.; Khrunyk, Y.Y.; Kryuchkova, M.O.; Milojevic, T.; Mogul,

R.; Sasaki, S. Exobiology of the venusian clouds: New insights into habitability through terrestrial models and methods of
detection. Astrobiology 2021, 21, 1186–1205. [CrossRef] [PubMed]

8. Hallsworth, J.E.; Koop, T.; Dallas, T.D.; Zorzano, M.-P.; Burkhardt, J.; Golyshina, O.V.; Martín-Torres, J.; Dymond, M.K.; Ball,
P.; McKay, C.P. Water activity in Venus’s uninhabitable clouds and other planetary atmospheres. Nat. Astron. 2021, 5, 665–675.
[CrossRef]

9. Way, M.J.; Del Genio, A.D. Venusian habitable climate scenarios: Modeling venus through time and applications to slowly
rotating venus-like exoplanets. J. Geophys. Res. Planets 2020, 125, e2019JE006276. [CrossRef]

10. Way, M.J.; Del Genio, A.D.; Kiang, N.Y.; Sohl, L.E.; Grinspoon, D.H.; Aleinov, I.; Kelley, M.; Clune, T. Was Venus the first habitable
world of our solar system? Geophys. Res. Lett. 2016, 43, 8376–8383.

11. Turbet, M.; Bolmont, E.; Chaverot, G.; Ehrenreich, D.; Leconte, J.; Marcq, E. Day–night cloud asymmetry prevents early oceans on
Venus but not on Earth. Nature 2021, 598, 276–280. [CrossRef] [PubMed]

12. Petkowski, J.J.; Seager, S.; Grinspoon, D.H.; Bains, W.; Ranjan, S.; Rimmer, P.B.; Buchanan, W.P.; Agrawal, A.; Mogul, R.; Carr, C.E.
Venus’ atmosphere anomalies as motivation for astrobiology missions. Astrobiology, 2022; in review.

13. Spacek, J. Organic carbon cycle in the atmosphere of venus. arXiv 2021, arXiv:2108.02286.
14. Seager, S.; Petkowski, J.J.; Carr, C.E.; Grinspoon, D.; Ehlmann, B.; Saikia, S.J.; Agrawal, R.; Buchanan, W.; Weber, M.U.; French, R.

Venus life finder mission study. arXiv 2021, arXiv:2112.05153.
15. Buchanan, W.P.; de Jong, M.; Agrawal, R.; Petkowski, J.J.; Arora, A.; Saikia, S.J.; Seager, S.; Longuski, J. Aerial platform design

options for a life-finding mission at venus. Aerospace 2022, 9, 363. [CrossRef]
16. Agrawal, R.; Buchanan, W.P.; Arora, A.; Girija, A.P.; de Jong, M.; Seager, S.; Petkowski, J.J.; Saikia, S.J.; Carr, C.E.; Grinspoon,

D.H.; et al. Mission architecture to characterize habitability of venus cloud layers via an aerial platform. Aerospace 2022, 9, 359.
[CrossRef]

17. Seager, S.; Petkowski, J.J.; Carr, C.E.; Saikia, S.J.; Agrawal, R.; Buchanan, W.P.; Grinspoon, D.H.; Weber, M.U.; Klupar, P.; Worden,
S.P. Venus life finder habitability mission: Motivation, science objectives, and instrumentation. Aerospace, 2022; in review.

https://venuscloudlife.com/
http://doi.org/10.1038/2151259a0
http://doi.org/10.1089/ast.2017.1783
http://doi.org/10.1089/153110704773600203
http://www.ncbi.nlm.nih.gov/pubmed/15104900
http://doi.org/10.1089/ast.2020.2326
http://doi.org/10.1089/ast.2020.2244
http://doi.org/10.1016/S0032-0633(99)00036-7
http://doi.org/10.1089/ast.2020.2296
http://www.ncbi.nlm.nih.gov/pubmed/34255549
http://doi.org/10.1038/s41550-021-01391-3
http://doi.org/10.1029/2019JE006276
http://doi.org/10.1038/s41586-021-03873-w
http://www.ncbi.nlm.nih.gov/pubmed/34645997
http://doi.org/10.3390/aerospace9070363
http://doi.org/10.3390/aerospace9070359


Aerospace 2022, 9, 385 9 of 9

18. Freeman, A.; Smrekar, S.E.; Hensley, S.; Wallace, M.; Sotin, C.; Darrach, M.; Xaypraseuth, P.; Helbert, J.; Mazarico, E. Veritas:
A Discovery-Class Venus Surface Geology and Geophysics Mission; Jet Propulsion Laboratory, National Aeronautics and Space
Administration: Pasadena, CA, USA, 2016.

19. Garvin, J.B.; Getty, S.A.; Arney, G.N.; Johnson, N.M.; Kohler, E.; Schwer, K.O.; Sekerak, M.; Bartels, A.; Saylor, R.S.;
Elliott, V.E.; et al. Revealing the mysteries of Venus: The DAVINCI mission. Planet. Sci. J. 2022, 3, 117. [CrossRef]

20. De Oliveira, M.R.R.; Gil, P.J.S.; Ghail, R. A novel orbiter mission concept for venus with the EnVision proposal. Acta Astronaut.
2018, 148, 260–267. [CrossRef]

21. Bains, W.; Petkowski, J.J.; Rimmer, P.B.; Seager, S. Production of ammonia makes Venusian clouds habitable and explains observed
cloud-level chemical anomalies. Proc. Natl. Acad. Sci. USA 2021, 118, e2110889118. [CrossRef]

22. Surkov, Y.A.; Andrejchikov, B.M.; Kalinkina, O.M. On the content of ammonia in the Venus atmosphere based on data obtained
from Venera 8 automatic station. Akademiia Nauk SSSR Doklady 1973, 213, 296–298.

23. Mogul, R.; Limaye, S.S.; Way, M.J.; Cordova, J.A. Venus’ mass spectra show signs of disequilibria in the middle clouds. Geophys.
Res. Lett. 2021, 48, e2020GL091327. [CrossRef]

24. Bouwman, A.F.; Lee, D.S.; Asman, W.A.H.; Dentener, F.J.; Van Der Hoek, K.W.; Olivier, J.G.J. A global high-resolution emission
inventory for ammonia. Global Biogeochem. Cycles 1997, 11, 561–587. [CrossRef]

25. Zhu, L.; Henze, D.K.; Bash, J.O.; Cady-Pereira, K.E.; Shephard, M.W.; Luo, M.; Capps, S.L. Sources and impacts of atmospheric
NH3: Current understanding and frontiers for modeling, measurements, and remote sensing in North America. Curr. Pollut. Rep.
2015, 1, 95–116. [CrossRef]

26. Rimmer, P.B.; Jordan, S.; Constantinou, T.; Woitke, P.; Shorttle, O.; Paschodimas, A.; Hobbs, R. Hydroxide salts in the clouds of
Venus: Their effect on the sulfur cycle and cloud droplet pH. Planet. Sci. J. 2021, 2, 133. [CrossRef]

27. Mogul, R.; Limaye, S.S.; Lee, Y.J.; Pasillas, M. Potential for phototrophy in Venus’ clouds. Astrobiology 2021, 21, 1237–1249.
[CrossRef]

28. Beswick, K.; Baumgardner, D.; Gallagher, M.; Volz-Thomas, A.; Nedelec, P.; Wang, K.-Y.; Lance, S. The backscatter cloud probe–a
compact low-profile autonomous optical spectrometer. Atmos. Meas. Tech. 2014, 7, 1443–1457. [CrossRef]

29. Lloyd, G.; Gallagher, M.; Choularton, T.; Krämer, M.; Andreas, P.; Baumgardner, D. In situ measurements of cirrus clouds on a
global scale. Atmosphere 2021, 12, 41. [CrossRef]

30. Pätzold, M.; Häusler, B.; Bird, M.K.; Tellmann, S.; Mattei, R.; Asmar, S.W.; Dehant, V.; Eidel, W.; Imamura, T.; Simpson, R.A. The
structure of Venus’ middle atmosphere and ionosphere. Nature 2007, 450, 657–660. [CrossRef]

31. Knollenberg, R.G. Clouds and hazes. Nature 1982, 296, 18. [CrossRef]
32. Knollenberg, R.; Travis, L.; Tomasko, M.; Smith, P.; Ragent, B.; Esposito, L.; McCleese, D.; Martonchik, J.; Beer, R. The clouds of

Venus: A synthesis report. J. Geophys. Res. Sp. Phys. 1980, 85, 8059–8081. [CrossRef]
33. Knollenberg, R.G. A reexamination of the evidence for large, solid particles in the clouds of Venus. Icarus 1984, 57, 161–183.

[CrossRef]
34. Grzebyk, T.; Szyszka, P.; Dziuban, J. Identification of a gas composition based on an optical spectrum of plasma generated in

MEMS ion spectrometer. In Proceedings of the 2021 IEEE 20th International Conference on Micro and Nanotechnology for Power
Generation and Energy Conversion Applications (PowerMEMS), Exeter, UK, 6–8 December 2021; pp. 148–151.

35. Grzebyk, T.; Bigos, M.; Górecka-Drzazga, A.; Dziuban, J.A.; Hasan, D.; Lee, C. Mems ion sources for spectroscopic identification
of gaseous and liquid samples. In Proceedings of the 2019 19th International Conference on Micro and Nanotechnology for Power
Generation and Energy Conversion Applications (PowerMEMS), Kraków, Poland, 2–6 December 2019; pp. 1–3.

36. Ren, G.; Zhang, B.Y.; Yao, Q.; Zavabeti, A.; Huertas, C.S.; Brkljača, R.; Khan, M.W.; Nili, H.; Datta, R.S.; Khan, H. An ultrasensitive
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