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ABSTRACT 

A nonlinear mathematical model of vertical transmis- 
sion of HIV/AIDS is proposed to study the effects of 
drug resistance in the spread of the disease. The study 
assumes that treatment leads to the evolution of drug 
resistance in some pockets of the population. We use 
traditional methods to determine conditions for exis- 
tence and stability of disease-free and endemic equi- 
librium points of the model. The study showed that 
the burden of the disease may be reduced if the re- 
production number is reduced below unity and may 
persist if the reproduction number is raised above 
unity. Furthermore, evolution of drug resistance due 
to treatment may change the cause of the epidemic. 
 
Keywords: Dynamics of HIV/AIDS; Vertical  
Transmission; Drug Resistance 

1. INTRODUCTION 

Diseases can be transmitted in various ways, some of 
which can be classified as horizontal or vertical. In the 
case of HIV/AIDS, horizontal transmission can result 
from direct physical contact between an infected indi- 
vidual and a susceptible individual. In this case, HIV 
infection is from the infected blood, semen and vaginal 
fluids to the exposure individuals. This often occurs 
when having unprotected sex with a person who has HIV. 
The other risks of HIV infection comprise of sharing 
needles, syringes or other equipment, illicit drugs for 
injection or during injection drug use (when needles are 
shared) with an infected HIV person. Any HIV infected 
individual can transmit the disease irrespective of the 
stage or treatment status. However, high risks of infec- 
tions are in the early stages of infection and during full 

blown AIDS stages. These stages are associated with 
high viral loads. 

Vertical transmission, on the other hand, results from 
direct transfer of a disease from an infected mother to an 
unborn or newly born offspring. Some of the diseases 
that can be transmitted vertically include chagas, dengue 
fever and hepatitis B. Vertical transmission of HIV/ 
AIDS generally occurs during pregnancy, delivery or 
breastfeeding and may be influenced by many factors 
such as maternal viral load and the type of delivery [1,2]. 
This type of transmission is sometimes called mother- 
to-child transmission or ethically parent-to-child trans- 
mission. Research has shown that, not all pregnancies in 
HIV-infected women result in vertical transmission. 

Pediatric HIV is a major contributor to high mortality 
rates among infants and children in sub-Saharan Africa 
and it remains a leading cause of deaths in children under 
the age of 5 years. It is estimated that one third of HIV 
positive infants die before their first birthday, while 50% 
die by their second birthday. Consequences of vertical 
transmission include reduction of life expectancy of HIV 
positive individuals [3]. Worldwide, one percent of pre- 
gnant women are HIV-positive and 95% of these HIV 
positive women live in sub-Saharan Africa. In the ab- 
sence of treatment, approximately 25% - 50% of HIV- 
positive mothers will transmit the virus to their newborns 
during pregnancy, childbirth, or breastfeeding [4]. In 
sub-Saharan Africa, over 1000 newborns are infected 
with HIV every day, despite available medical interven- 
tions. The high rates of vertical transmission in Africa 
are attributed to low rates accessibility of intervention 
programmes and lack of adherence to the necessary me- 
dications to prevent mother-to-child transmission. 

Prevention of mother-to-child transmission of HIV 
(PMTCT) can dramatically reduce the risk of vertical 
transmission. Success stories have been reported in the 
United States and Europe and it remains a serious chal- *Corresponding author. 
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lenge to Africa [3]. Prevention of mother-to-child trans- 
mission involves the use of antiretroviral therapy (ART), 
caesarean section [5,6] and refraining from breastfeed- 
ing. Antiretroviral drugs are administered during preg- 
nancy, at delivery and postnatally to the child and moth- 
ers. In resource-poor countries, short course regimens 
based on single dose nevirapine to the mother and infant 
are being used [7]. In summary, the burden of vertical 
transmission of HIV can be reduced by enrolling parent- 
to-child prevention programs which involve testing the 
mothers and blocking of transmission through the use of 
antiretroviral drugs, elective caesarean section and use of 
replacement infant feeding [8]. 

Drug resistance refers to the ability of microorganisms 
to adapt, survive and multiply in the presence of drugs 
that would normally kill or weaken them. In the case of 
HIV, the virus adapts and multiplies in the presence of 
antiretroviral (ARV) drugs often making mistakes of 
copying its genetic blueprint RNA. Some of these mis- 
takes, called mutations, can make HIV resistant to one or 
more ARV drugs. With regard to vertical transmission, 
we are concerned with the potential selection of drug– 
resistant virus following short course of ARV treatment 
to prevent parent-to-child transmission (PPCT). Reports 
show that up to 20% of women who receive a single dose 
of nevirapine in HIVNET regime developed resistance [9] 
and this leads to the development of strains of HIV resis- 
tant to multiple combinations of ARVs. 

This study therefore extends mathematical models of 
vertical transmission with treatment by incorporating the 
effects of drug resistance. The main objective of the 
study is to investigate the effects of vertical transmission 
and evolution of drug resistance in the HIV disease dy- 
namics. The paper is arranged as follows: Section 1 in- 
troduces the study, model formulation is presented in 
Section 2, Section 3 presents model analysis, Section 4 
presents numerical simulations while Section 5 dis- 
cusses the results and presents the conclusions of the 
study. 

2. MODEL FORMULATION 

A mathematical model of a disease transmitted both 
horizontally and vertically in which the treatment pro- 
gramme results in the evolution of drug resistance is 
proposed and analysed. The proposed model sub-divides 
the population of interest into seven compartments, de- 
pending on their disease status and type of pathogen (i.e. 
resistant or wild strain). The sub-populations are the 
Susceptibles S(t), drug resistant infectives IR, drug sensi- 
tive infectives Iw, treated drug sensitive infective Tw, 
treated drug resistant infective TR, AIDS drug sensitive 
Aw and AIDS drug resistant class AR. The total popula- 
tion at time t is given by 

        
     

w R w

R w R

N t S t I t I t T t

T t A t A t

   

  


       (1) 

To reduce the size of the model we relaxed the distinc- 
tion between the asymptomatic (no clinical signs) and 
symptomatic (clinical signs) stages of HIV (WHO stag- 
ing of HIV). We assumed mass action type of force of 
infection as opposed to standard incidence to allow for 
mathematical tractability of the model. This assumption 
is an over simplification of reality particularly highly 
infectious diseases like HIV. We further assume that 
treatment only reduces the level of infectiousness. Table 
1 below presents the definitions and descriptions of the 
parameters and state variables used in the model. It is 
worth stating that all model parameters non-negative and 
all have values in the open set (0, ∞) except ρ which 
picks values in the set [1, ∞). 

The problem described above can be represented 
schematically by the flow diagram below (Figure 1): 

The model description above leads to a system of 
nonlinear ordinary differential equations: 
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where 
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3. MODEL ANALYSIS 

System (2) is analysed to find conditions for existence  
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Figure 1. Vertical transmission model of HIV with drug resistance. 
 
Table 1. Parameters and their descriptions.  

2 2 3 3

s wf Rf w w R R

w w R R w w R R

N N b I I I

T T A A

   

   

     

   

 I
 Parameter Description 

εw Proportion of offspring who are drug sensitive 

εR Proportion of offspring with drug resistance 

λw Force of infection of drug sensitive individuals 

λR Force of infection of drug resistant individuals 

δiw, i = 1, 2, 3 
AIDS related death of infected drug sensitive, treated 
drug sensitive and AIDS drug sensitive respectively 

δiR, i = 1, 2, 3 
AIDS related death of infected drug resistant, treated 
drug resistant and AIDS drug resistant  
respectively 

νw 
Progression rate from infected drug sensitive to AIDS 
drug sensitive 

νR 
Progression rate from infected drug resistant to AIDS 
drug resistant 

αw 
Progression rate of infected drug sensitive to treated 
drug sensitive 

αR 
Progression rate of infected drug resistant to treated 
drug resistant 

γw Evolution rate of drug resistant virus 

ρ Modification parameter 

In the absence of HIV infection the total population 
converges to .s   It follows that the  

 
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and stability of disease free and endemic equilibrium 
points. This analysis of the model allows us to determine 
the impact of drug resistant virus in the treatment and 
vertical transmission on the transmission of HIV/AIDS 
infection in a population characterized in terms of the 
reproductive number R0. 

3.1. Positivity of Solutions 

Adding equations of system (2) we obtain an equation 
governing changes in the total population  

limsup s
i

N t    and it suffices to study system (2)  

in an invariant set 

  7, , , ,w R w R sT T A A, ,w RS I I     

We now show that the initial data of (S, Iw, IR, Tw, TR, 
Aw, AR) which are non-negative lead to solutions that 
remain non-negative for all t ≥ 0. 
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where  Then the solutions {S(t), Iw(t), Tw(t), 
Aw(t), IR(t), TR(t), AR(t)} of the model system of Equation 
(2) are positive 

.F  

t  . 
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 

 
0 0

d
,

d

1
d d

w R

t t

w R

S
S

t

S s
S

  

  

   

     ,



 

which gives 

   
 

   0

d

0 e 0 e 0.

t

w R
w R

s
sS t S S

  
  

  
  

   

As  we obtain t    0S t  . Hence all feasible 
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solution of system (2) enter the region  
              , , , , , ,w w w R R RS t I t T t A t I t T t A t F.   

Similar proofs can be established for the positivity of Iw, 
Tw, Aw, IR, TR, AR. 

Thus, the equations of system (2) are well posed. 

3.2. Steady State Solutions 

The equilibrium solutions of the model (2) are obtained 
by setting the right hand side of system (2) to zero, to 
solve the following system of non-linear equations: 
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to be threshold parameter due to the wild strain, and then 
substituting for *

wfI  and wf  in the equation for  
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The solution  yields *
wI  0 *
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Substituting *
RA  in the expressions for *
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we get  

 * *
1 2 0 3R R R R R RI Q T       

and  

 * *
01 *

Rf R RI I Q  
*

T . 

The expression for wfI  together with an equation for 
*
RI  give *

1
*

R RT Q I  where  

 1
2 0

.
1

R R R

R R R R

b
Q

b Q

  
    

 


    
 

provided that  

 2 01R R R Rb Q         . 

With this expression for *
RT  the expressions for *

RfI  
and R  reduce to *

R R RI   and *
2

*
Rf RI Q I  where  

 1 2 0 3R R R RQ Q      1  

and  

 2 01 1Q Q  
*

1Q  

Substituting for RfI  and R  in the equation for *
RI  

we obtaining *
RI 0   

or  
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3.2.1. Disease-Free Equilibrium 
The solution * 0wI  and lead to the disease–free 
equilibrium point 

* 0RI 

0

π
,0,0,0,0,0,0 .sE


 

  
 

 

3.2.2. Wild Strain-Free Equilibrium 

The solutions * 0wI    

and  

*

0

1

R

S 


 

lead to an drug resistant strain endemic equilibrium 
given by  * * *,0,0,0, , , *

R R R RE S I T A  with coordinates  

* * * *
1 0

0

1 *
1, ,R R R R

R

S T Q I A Q Q I  


,  

and 

   *
0

1 2 0

0 0

1
1 ;

π

R
R

R R R R R R

R s
R

I
b Q


     



  
           

  

. 

3.2.3. Drug Resistant Strain-Free Equilibrium 
The solutions * 0wI   and  
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3.2.4. Coexistence of Wild and Resistant Strains 
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b Q
Q

P b Q

    
   

  


 0  
 

Then we establish a relationship between *
wI  and *

RI  
as  

 * *
5 0 0w w R RI Q I    

Clearly, 0 0w R  

*S

 and result confirms the findings 
in literature which claims that the virulence of resistant 
strain is weak than the wild strain. The results above and 
the equation for  yield 

 
 

0*

6 0 0 7

1
,

R

R
w R

I
Q Q

  


  
 

where 

 6 5 2 0 2 0w R w wR R wQ Q b P b Q          

and 

7 2 0R R wQ b Q     

satisfying the conditions 

2 0 2 0 2 0, andw R w wR R w R Rb P b Q b Q           w   

3.2.5. The Model Reproduction Numbers  
(Thresholds) 

Suppose  

2 3
2 2

1
1 1

1 1

2
2

2

2
2

3
3 3

3 3

1
2

2

, ,

, ,

,

,

, ,

,

w w

w w w w w w

w ww R R
h

w w w w

w w
h

w w w w

w R R

w w w w

w ww R R
h

w w

w R R
T

w w

w R R
T

w

K b

K

b

K b

b

b











2

 
  

       
  

     


    
 

    
  

   
 

  
 

  

 
     


   

   

 
   


 

   


   
 

 
 

 
 

 
  3

2 3

, and .w R R
T

w w w w

b


 
    

 
 

  

 

Then we can express the generation of secondary in- 
fections due to horizontal transmission as  

0 1 2 2 3
w w w

h h h  0
w

h        

and vertical transmission as  

0 1 2 2 3
w w w

v v v  0
w

v        

with the net effects of the transmission due to the wild 
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strain given by 0 0 . The reproduction 
number of the model is given by 

0
w

v
w w

h   

 
2

1 1 0
0 0 0 0

0

w
4

max ,
2

here i i iw w w

i

a a a a
R R R R

a

 
  2i  

with  

 

 

3

0 1

1 1 2 2 3 3 2 2 3

2 2 1 1 2 3 3 1 1 3

1, ;

,

w w w
i jhv vh jvj

i i i i i
i hv hv hv v v

i i i i i i i i
i vT hv vT hv vT hv vT hv

a

a

a

  




    

        

        



2

  

and 1 2i  for . The parameter 0  is de- 
fined as the average number of secondary infections 
generated by introducing an infected individual (with 
either wild or resistant strain) in a wholly susceptible 
population. The threshold parameters 

4ia a ,i w R R

i
jvT  for  

,i w R  and , are the demographic replace- 
ment of secondary infections due to vertical transmission 
by individuals identified and enrolled on antiretroviral 
therapy (ART) from childhood, while 

1, 2,3j 

i
jv  for ,i w R  

and  are the demographic replacement of sec- 
ondary infections due to vertical transmission by off- 
springs who progress from birth to adulthood without 
treatment. 

1, 2,3j 

3.3. Local Stability of Disease-Free Equilibrium  
Point 

Evaluating at the disease-free equilibrium point  

0 ,0,0,0,0,0,0sE



 
  
 

, 

the system has the Jacobian matrix
0EJ , given by 

11 12 13

0 22
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 
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A A A
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where 
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We note from matrix 11  that 1    and the 
other eigenvalues can be found form solving the charac- 

teristic polynomials of the block matrices 22  and . 
The characteristic polynomial of the block matrix  
is given by, 

A 33A
22A

3 2
2 1 0 0,p p p       

where 

2 3 5 2 1 1
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with 

1 1 2 3

4 5 2 3

, , ,

, ,
w w w w w w

w w w w w w w

g b g b g b

g b g b g b

     
        

       
         

After some manipulations it can be shown that the ex- 
pression for 0p  is written as 

 0 1 0,1 Cp Z R w   ,

2 ,wM M

        

w

 (4) 

where 

1 6 1 1 5 3 3w wZ g g g g M M w    
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 (5) 

The threshold  0,CR w  is called the basic reproduc- 
tion number for wild virus type for the system (2). 

The characteristic polynomial of block matrix  is 
given by, 

33A
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The expression for can be written as 0h

 0 2 0,1 Ch Z R           (6) 

where 
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The threshold  0,C R  is called the basic reproduc- 
tion number for drug resistant virus type for the system 
(2). 

From Equation (5) and (7), we now have the effective 
reproduction number of the model (denoted by 

 0,C wR ) given by 

      0, 0, 0,

1 3 1 3

2 2 2

3 3 3 3

max ,

, ,

,

, .

C C C

w w w R R R

w w w R R R R R

w w R R R

R wR R w R

M M
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2 ,       
    

 

     

       

    

 

Theorem 1 
The disease-free equilibrium point of the vertical 

transmission model (2) with drug resistance is locally 
asymptotically stable if  0, 1CR wR   and unstable if 

 0, 1CR wR  . 

4. NUMERICAL SIMULATIONS 

In order to illustrate some of the analytical results of the 
study, numerous numerical simulations of the model (2) 
are carried out using a set of reasonable parameter values 
given in Table 2 below. 

 
Table 2. Parameter values used in numerical simulation. 

Parameters Values Source 

πS  100,000 [10] 

b  0.06 [11] 

  0.03 [12] 

w  and R  
0.7

0.7
w

R







 [11] 
[11] 

w  and R  
0.2

0.3
w

R







 Estimated 
Estimated 

, 1,2,3iw i   
1

2

3

0.111

0.222

0.333

w

w

w









 
Estimated 
Estimated 

[10] 

, 1,2,3iR i   
1

2

3

0.4

0.5

0.6

R

R

R









 
Estimated 
Estimated 
Estimated 

w  and R  
0.05

0.1
w

R







 [12] 
[13] 

w  and R  
0.6

0.7
w

R







 [14] 
Estimated 

w  0.08w   Estimated 

  1.2   Estimated 

i  

1

2

3

1

2

3

0.2

0.08

0.12

0.3

0.09

0.13

w

w

w

R

R

R















 

[15] 
[15] 

Estimated 
Estimated 
Estimated 
Estimated 

However these parameters may (or may not) be bio- 
logically feasible. 

Figure 2 below shows the variations of the seven 
classes of HIV/AIDS model with drug resistance. 

Form Figure 2 it can be seen is that, infective popula- 
tion is increasing. This leads into the decrease in suscep- 
tible class. 

Figure 3 below shows the effects of rate of HIV Free 
children born with wild sensitive virus. 

Figure 3 shows that as w  increases, individuals in 
AIDS and treated classes with drug resistant virus de- 
crease. However, the number of susceptible individuals 
increases. 

Figure 4 below shows the effects of Rate of HIV Free 
Children Born with Drug Resistant Virus. 

Figure 4 shows that as the proportion of children who 
are drug resistant born HIV negative increases, the num- 
bers of populations in the drug resistant class and treated 
drug resistant class decrease. 

Figure 5 below depicts the behaviour of the AIDS 
population with both wild and resistant strains, and 
treated population with resistant strain as influence by 
changes in the progression rates of drug resistant indi- 
viduals to AIDS. 

From Figure 5 it is seen that at high progression rates, 
the three classes reach their peaks much faster than at 
low values of progression rates, with AIDS class having 
the highest peak and infective population having the 
lowest peak. 

Figure 6 shows the effects of variation of progression 
rates to RI  and RT  when w  is varied. 

Figure 6 shows that increasing w  leads to decrease 
in number of individuals in the treated and infected with 
wild virus classes. However, individuals in RI , RT  and 

RA  increase as w  increases. 
Figure 7 below show the effects of treatment rates of 
 

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15
x 10

6

Time in years

T
o

ta
l 

p
o

p
u

la
ti

o
n

 

 

Susceptibles

Drug sensitive infective

Treated drug sensitive infective

AIDS drug sensitive class
Drug resistant infective

Treated drug resistant infective

AIDS drug resistant class

 

Figure 2. Illustration of the changes in seven state variables of 
full HIV/AIDS model with drug resistance. 
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(a)                                      (b)                                      (c) 

Figure 3. Effects of variation of proportion of children born with wild sensitive virus. 
 

          
(a)                                                   (b) 

          
(c)                                                    (d) 

Figure 4. Dynamics of drug resistance influenced by vertical transmission with εR being varied. 
 

 
(a)                                     (b)                                      (c) 

Figure 5. Effects of rate of progression to AIDS on vertical transmission. 
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(a)                                     (b)                                      (c) 

  
(d)                                      (e) 

Figure 6. Effects of variation of progression rates to RI  and RT  when w  varied. 

 

 
(a)                                     (b)                                      (c) 

Figure 7. Effects of treatment rates of infected individuals with drug resistant virus as R  varies. 

 
infected individuals with drug resistant virus as R  
varies. 

As the rate of treatment, R  increases, the number of 
individuals infected with drug resistant virus decreases. 
From Figure 7(c), as the rate of treatment increases, the 
number of AIDS patients with drug resistance increase. It 
is also noted that the peaks for different values of R  
occur at the same time as for RI , RT  and RA  classes. 

5. DISCUSSION AND CONCLUSIONS 
In this paper, a non-linear mathematical model to study 
the transmission of HIV/AIDS in a population of varying 
size with vertical transmission and drug resistance was  
proposed and analysed. Both qualitative and numerical 
analysis of the model was done. The disease-free and 
endemic equilibrium points were obtained and their sta- 
bilities were investigated. A numerical study of the mo- 
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del has been conducted to see the effect of certain key 
parameters on the spread of the disease. It was estab- 
lished that the disease-free equilibrium is locally asymp-
totically stable if the basic reproduction number 

 0, 1CR wR   and unstable if  0, 1CR wR   and the in- 
fection persists in the population. 

The results have shown that treatment may increase 
drug resistance among treated individuals. The results 
further showed that increase in the rate of children born 
with HIV with drug resistance leads to increase of the 
infected individuals with drug resistance and will in long 
run lead to increase in the AIDS population with drug 
resistance. It was noted that drug resistant virus is emerg- 
ing in some of the individuals who are on ARV treatment. 
This will in the long run cause treatment failure among 
people who are under ARV treatment. As a result of this, 
more people will be dying of AIDS related diseases. This 
clearly shows that drug resistance has an impact on the 
dynamics of HIV/AIDs transmission. 
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