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ABSTRACT. In this article we present non-convex hybrid iteration algo-
rithm corollaryresponding to Karakaya iterative scheme [I] as done by
Guan et al. in [2] corollaryresponding to Mann iterative scheme [3]. We
also prove some strong convergence results about common fixed points for a
uniformly closed asymptotic family of countable quasi-Lipschitz mappings
in Hilbert spaces.
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1. Introduction

Fixed points of special mappings like nonexpansive, asymptotically nonexpan-
sive, contractive and other mappings has become a field of interest on its on and
has a variety of applications in related fields like image recovery, signal process-
ing and geometry of objects [4]. Almost in all branches of mathematics we see
some versions of theorems relating to fixed points of functions of special nature.
As a result we apply them in industry, toy making, finance, aircrafts and manu-
facturing of new model cars. A fixed-point iteration scheme has been applied in
IMRT optimization to pre-compute dose-deposition coefficient (DDC) matrix,
see [B]. Because of its vast range of applications almost in all directions, the
research in it is moving rapidly and an immense literature is present now.

Constructive fixed point theorems (e.g. Banach fixed point theorem) which not
only claim the existence of a fixed point but yield an algorithm, too (in the
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Banach case fixed point iteration z,y+; = f(z,)). Any equation that can be
written as & = f(z) for some map f that is contracting with respect to some
(complete) metric on X will provide such a fixed point iteration. Mann’s iter-
ation method was the stepping stone in this regard and is invariably used in
most of the occasions see[3]. But it only ensures weak convergence, see [6] but
more often then not, we require strong convergence in many real world problems
relating to Hilbert spaces, see [7]. So mathematician are in search for the mod-
ifications of the Mann’s process to control and ensure the strong convergence,
([2L 6, 8, @, M0, AT, M2l 3] and references therein).

Most probably the first noticeable modification of Mann’s Iteration process was
propositionosed by Nakajo et al. in [9] in 2003. They introduced this modifi-
cation for only one nonexpansive mapping, where as Kim et al. introduced a
variant for asymptotically nonexpansive mapping in the context of Hilbert spaces
in the year 2006, see [10]. In the same year Martinez et al. in [II] introduced
a variation of the Ishikawa Iteration process for a nonexpansive mapping for a
Hilbert space. They also gave a variant of Halpern method. Su et al. in [12]
gave a hybrid iteration process for nonexpansive mapping which is monotone.
Liu et al. in [I3] gave a novel method for quasi-asymptotically finite family of
pseudo-contractive mapping. Let H be the reserved symbol for Hilbert space
and C be nonempty, closed and convex subset of it. First we recall some ba-
sic definitions that will accompany us throughout this paper. Let P.(.) be the
metric projection onto C. A mapping T : C' — C' is said to be non-expensive if
1Tz —Ty|| <||z—y| Va,y € C. And T : C — C is said to be quasi-Lipschitz if
1) FizT # ¢

2) For all p € FixT, || Tx — p|| < L||x — p|| where L is a constant 1 < L < oo.
If L =1 then T is known as quasi-nonexpansive. It is well-known that T is said
to be closed if for n — oo, x,, — « and ||Tz, — x| — 0 implies Tz = 2. T
is said to be weak closed if x,, — x and [Tz, — z,| — 0 implies Tz = x. as
n — oo. It is trivial fact that a mapping which is weak closed should be closed
but converse is no longer true.

Let {T},} be a sequence of mappings having non-empty fixed points sets. Then
{T},} is called uniformly closed if for all convergent sequences {Z,} C C' with
conditions || Zx, — Z,|| = 0,n — oo implies the limit of {Z,,} belongs to FizT;.
In 1953 [3], we have Mann iterative sheme:

Tnt1 = (1 —an)xun+a,T(x,);n=0,1,2,....

In [2] Guan et al. established non-convex hybrid iteration algorithm corollaryre-
sponding to Mann iterative scheme:

xg € C' = Qo, arbitrarily,
Yn = (1 - an)xn + anTn Ty, n >0,
Cpn=1{2€C:|lyn—2|| <A+ (Lp, — Day)||zn —2||NA, n>0,
Qn=1{2€Qn_1:(xn—2z,x0—1xp) >0}, n>1,

Tn+1 = P@C,LHQ,,LZCO,
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and proved some strong convergence results about common fixed points relating
to a family of countable uniformly closed asymptotic quasi-Lipschitz mappings
in H. They applied their results for the finite case to obtain fixed points.
The Karakaya iterative scheme [I] was defined in 2013 as

Tp4+1 = (1 — Qp — ﬁn)yn + anT(yn) + ﬁnT(zn)a

Yn = (L —an — bp)zn + anT(2n) + 0, T (20);

zn = (1= vn)xn + ¥ T (z4); n=0,1,2,....
where an, Bn, Vn, @n, b € [0,1], 0 + B € [0,1],an + b, € [0,1] for all n €
N and > (o + Bp) = .
In this article, we establish a non-convex hybrid algorithms corollaryrespond-
ing to Karakaya iteration scheme. Then we also establish strong convergence
theorems with proofs about common fixed points related to a uniformly closed
asymptotically family of countable quasi-Lipschitz mappings in the realm of
Hilbert spaces. An application of this algorithm is also given. We fix ¢oC,, for
closed convex closure of C,, for alln > 1, A= {z € H : ||z — Prao|| < 1}, T,
for countable quasi-L,-Lipschitz mappings from C into itself, and T be closed
quasi-nonexpansive mapping from C into itself to avoid redundancy.

2. Main results
In this section we give our main results.
Definition 2.1. {T},} is said to be asymptotic, if lim,, o, L, = 1
Proposition 2.2. For x € H and z € C, z = Pox iff we have
(xt—2z,2—y) >0
forally e C.

Proposition 2.3. The common fixed point set F' of above said T, is closed and
conver.

Proposition 2.4. For any given zg € H, we have

p=Poxg < (p— 2,20 —p) >0,VzeC.
Theorem 2.5. Assume that oy, B, Yn, an and b, € [0,1], ap, + B, € [0,1] and
an + by, €(0,1] for alln € N and 377 (o + Bn) = 00. Then {x,} generated
by
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zo € C' = Qo, arbitrarily,
Yn = (1 — OQn — ﬂn)zn + anThnzn + BnTntn, n >0,
Zn = (]- — an — bn)tn + anTpty, + bnTnxnv n > 07
tn = (1 - ’yn)xn + P)/nTnx'm n 07

Con={2€C:|lyn— 2| <1+ (Ln(1 = by — 29, — 2an + 3anTn
+2bn7n) + L%(_gan’}/n + Yn — bn’)/n +an + bn) + aananz
+apn + by — anyn — by — Dag, + (L (1 — @y — by — 29,
+2an7n - bn’yn) =+ L?z(fanf}/n + fYn) - bn'Vn — QpYn — bn
+an + Y0 — 1)Bn + (Ln(1 — 2a, — 2b,) + an L2 + b, — ay,
_1)'7n_an_bn+Ln(an+bn)]Hxn_Z”}ﬂAv n >0,
Qn=1{2€Qn-1:(xn— 2,20 —s) >0}, n>1,
Tn+1 = Pesc,nq., To,

converges strongly to Prxg.

Proof. We partition our proof in following seven steps.
Step 1. We know that ¢oC,, and @,, are closed and convex for all n > 0. Next,
we show that F'N A C ¢oC,, for all n > 0. Indeed, for each p € F'N A, we have
1yn — pll
=1 = an = Bn)zn + anTnzn + BuTntn — p|
=1 — an — B)[(1 — an — bp)tyn + anTnty + by Thay]
+ anTh[(1 — ap — bp)tn + anTutn + bnTnxn] + BnThtn — ||
=[|(1 = an = Bu)[(1 = an — bn) (1 = Yn)2n + v Tnan)
+ anTn((1 = Yn)@n + Y Tnxn) + bn Thay]
+ anTp[(1 = apn — bn)((1 = )T + Y0 Tnwn)
+ anTh (1 = Y0)@n + Y Tnxn) + 0nTnxn] + B Thl(1 — vn)xn + Y Taxn] — pl|
=1 =9 = @n = by — an = B — @Y + buYn + an Y + ana
+ bpan + BnYn + anfn — bnfn — ananYn — bnnYn — anBnYn — bnfnn)
X (xp —p) + (0 + an +bp + Bn + @y — byt — anfBn — bpBrn — 20,7
— 2b,Yn — 20 Yn — 2050 — 2800 + 300 Yn + 20000 Yn + 200 BnYn
= b B vn) (Tnan — p) + (anVn = 3an0nYn = @nBpyn + nYn — bnanyn
+ anon + bpay + ﬁn'Yn)(Tgxn -p)+ (anan'yn)(Tsxn ol
< (1= —an —bp —an — Bn — anYn + buyn + anYn + anay,
+ bpan + BnYn + @nfrn — bnBn — @nQpnYn — bnQnYn — GnBnYn
— b Bn )10 — Pl + (Yo + @n + by + B+ @ — bpn — @B — bpfBa
— 20, Yn — 26 Y0 — 20,V — 205,00 — 280 Y0 + 300 QnYn + 2bn00Yn
+2a,8nYn — bnﬂn'yn)Ln”zn - p” + (an7n — 34n0nYn — AnBnYn
+ Y = bun Y + Anan + bpn + Buyn) L 2 — pll + (ancnyn) L |20 — pl|
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=1+ (Lp(1 = by — 2y, — 2ap, + 3anYn + 2by¥n) + L2 (—3an7n

+ Yo = bpYn + @y bn) F @Y L2 4 an + by — anYn — buyn — Dan,
+ (Ln(1 = an = by = 29 + 20070 — bu¥n) + Lo (—an¥n +n) = bn
— anYn = b+ @+ Vo — 1)Bn + (Ln(1 = 2a, — 2by) + an L2 + by
—an — D)y — an — by + Ly(an + by)] ||z — pl]

and p € A, so p € C,, which implies that F'N A C C,, for all n > 0. Therefore,
FnNAcCeoC, for all n > 0.

Step 2. We show that F N A C ¢oC,, N Q,, for all n > 0. It suffices to show
that FN A C Q,, for all n > 0. We prove this by mathematical induction. For
n =0 we have FNA C C = Qp. Assume that FN A C Q,. Since x, 1 is the
projection of zy onto ¢oC,, N Q,, from proposition we have

(Xnt1 — 2, Tny1 — o) <0, Vz € 0C, N Qyp

as FNA C coC,, NQy, the last inequality holds, in particular, for all z € F N A.
This together with the definition of @+ implies that F N A C Q,+1. Hence
the FN A C coC,, N Q,, holds for all n > 0.

Step 3. We prove {z,} is bounded. Since F' is a nonepmty, closed, and convex
subset of C', there exists a unique element zy € F' such that zg = Prxy. From
Tn+1 = Pesc,nq., To, we have

[#n41 = zol| < [z — ol

for every z € coCp, N Q. As zg € FNA C coCp, NQ,, we get

[#nt1 — 20|l < [lz0 — 0|

for each n > 0. This implies that {x,,} is bounded.

Step 4. We show that {x,} converges strongly to a point of C' by showing that
{z,} is a cauchy sequence. As x,4+1 = Pwmc,ng, %o C Qn and z,, = Py, o
(Proposition 2.4)), we have

Jns1 — zoll = o — ol

for every n > 0, which together with the boundedness of ||z, — z¢|| implies that
there exsists the limit of ||z, — zg||. On the other hand, from %, € Qn, we
have (x;, — Zytm,Tn — o) < 0 and hence

1 Zntm — 1777”2 = [[(Tnt+m — 20) — (Tn — 930)”2

< N#ntm = zoll? = 12 — oll* = 2(@n4m — Tny 20 — 20)
< |#ngm — x0||2 — |n — IOHQ —0, n—o00
for any m > 1. Therefore {z,} is a cauchy sequence in C, then there exists a
point ¢ € C such that lim,,_, o z,, = q.
Step 5. We show that y, — ¢, as n — oco. Let
Dy ={2€ C:|lyn — 2| < llwn — 21> + (L3 — 2Ly — 6)(L — 2L, — 4)}.
From the definition of D,,, we have
Dy={2€C:(Yn—2,yn—2) <(Tn — 2,2y — 2)
+ (L3 — 2Ly, — 6)(L}, — 2L, — 4)}
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={z € C: |lyall® = 2{yn, 2) + |12I° < [lzall® - 2(zn, 2)

+ 12l* + (L3 — 2Ly — 6)(L;, — 2Ln — 4)}

{2 C 2 — g, ) < Nl — g+ (L3 — 2L, — 6)(I5 — 2L, — 4)}
This shows that D,, is convex and closed, n € Z* U{0}. Next, we want to prove
that
C, C Dy, n>0. In fact, for any 2z € C,, we have
lyn — 2] < [1+ (Ln(1 = by — 295 — 2ap, + 3anyn + 2b5Yn) + L2 (—=3anYn + Y

— b Yn + An + b)) + anYn L3 4 an + by — anYn — bpyn — Ly,

+ (Ln(1 = an = by = 29 + 20070 — by ) + L2 (=ann + )

—bnYn — @Y — b + an + Y — 1) B0 + (Ln(1 — 2a, — 2by,)

+anL? 4 by — ap — Dy — an — by + Ly (an + 0,)]2 |20 — 2|2

= ||z — 2||? + 2[(Ln(1 = by — 279 — 20y, + 3anYn + 2b,70)

+ L2 (=3anYn + Yn — bnYn + an + bn) + anyn L2 4+ an + by — anyn

—bpYn — Day, + (Ln(1 — an — by — 279 + 2a0Yn — buyn)

+ L2 (—anYn +Yn) = bnYn — @nYn — b + an + 0 — 1)By

+ (Ln(1 = 2ay, — 2by) 4+ an L2 4+ by — ap — 1)y — an — by + Ly(ay + by)]

+ [(Ln (1 = by — 27 — 200 + 3anYn + 2b0¥n) + L2 (=3a0Yn + Yn

—bpYn + @n + bn) + an i LE 4 an + by — anyn — by — Day,

+ (Ln(1 = an — bn — 29 + 2a0Yn — bp¥n) + L2 (—anyn + V)

— b Yn — anYn — bp 4+ an + v — 1)Bn + (Ln(1 — 2a,, — 2by,)

+anL? 4 by — an — Dyp — an — by + Ly (an + b)) 2] ||z, — 2|2

<l — 212 + [2(L7, = 2Ly — 6) + (Lj, — 2Ly — 6)°] [l — 22

= ||@y — 2||* + (L3 — 2L, — 6)(L3 — 2L, — 4|z, — 2.
From C,, ={z € C: |lyn — 2|| < [1+ (Ln(1 = by, — 2vn — 20y, + 3anyn + 2bpyn) +
L2 (=3anYn+Yn—bnYn+an+bn) +anYn L3 +an+bn—anyn —bnyn—1)an+(Ly(1—
an—bn—29n+2a0 0 —bn Y0 )+ L2 (—ann+7n) —bnYn—anYn—bn+an+v,—1) Bn+
(Ln(1—2a5,—2by,)+ap L2 4+by —an —1)Yp —ap —bp+ Ly (an+bp)] |20 — 2| JNA, n >

0, we have C,, C A, n > 0. Since A is convex, we also have ¢coC,, C A, n > 0.
Consider z,, € coC,,_1, we know that

[yn — 21l < Nl — 2l|* + (L5 — 2Ly = 6)(L;, — 2Ly — 4) ||z — 2|12
< lwn — 2% + (LS — 2Ly, — 6)(L3 — 2L, — 4).

This implies that z € D,, and hence C,, C D,,, n > 0. Sinnce D,, is convex, we
have ¢o(C,,) C Dy, n > 0. Therefore ||y, — zpni1]]? < |20 — 2pia]|* + (L3 —
2L, —6)(L3 — 2L, —4) — 0, as n — co. That is, y, — ¢ as n — oo.
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Step 6. To prove that ¢ € F, we use definition of y,,. So we have (v, + B, +
Tn + an + bn — QnYn — bn’)/n — QpYn — AnQp + QO Yn — bnan + bnan’}/n - 6n7n -
anﬁn + anﬁn’)/n - bnﬁn + bnﬁn’)’n - anﬁn’YnTn - anan’YnTn + Oén’YnTn + ananTn -
ananvnTn +bnanTn - bnan'ynTn +ﬁn’7nTn +anan7nT7% +an’7nTn) ||Tn37n —Tn || =
|y, — znl] = 0, as n — oo. Since a,, € (a,1] C [0, 1], from the above limit we
have lim,, — oo||T,x, — 2| = 0.

Since {T},} is uniformly closed and xz,, — ¢, we have ¢ € F.

Step 7. We claim that ¢ = zg = Prxy, if not, we have that ||zo—p|| > ||zo— 20|
There must exist a positive integer N, if n > N then ||zg — x| > ||zo — 20/l

which leads to ||z0 — Zx]|? = ||20 — Zn + Zn — 20|? = ||20 — Tn||* + |70 — z0||* +
2(zp — Ty, Tn — o). It follows that (zo — n,z, — xg) < 0 which implies that
20€Qn, so that zg€F, this is a contradiction. This completes the proof. O

Now, we present an example of C,, which does not involve a convex subset.

Example 2.6. Take H = R?, and a sequence of mappings T}, : R? — R? given
by Ty, : (t1,t2) = (§t1,t2), V(t1,t2) € R%, Vn > 0.

It is clear that {T,} satisfies the desired definition of with F' = {(¢1,0) : t; €
(—00,400)} common fixed point set. Take z¢ = (4,0), ag = g, we have

Yo = %(EO—F gTO-TO = (4 X %"‘% X g,O) = (170)

Take 14 (Lo — 1)ap = \/g,

Co={z € R*:|lyo — 2I| < /3 lla0 — 2}

It is easy to show that z; = (1,3), 22 = (—1,3) € (. But

Zl = %2’1 + %22 = (0,3)@00,

since ||yo — z|| = 2, ||xg — 2|| = 1. Therefore Cy is not convex.

we have

Corollary 2.7. Assume that c,, Bn, Yn, an and by, € [0,1], ay, + B, € [0,1] and
an + by €(0,1] for alln € N and 3.7 ((ay, + Bn) = 0o. Then {z,} generated
by

x9 € C = Qo, arbitrarily,
Yn = (1 — Qp — Bn)zn + anTZn + IBnTtny n > Oa
2n = (1 —ap — bp)tn + apTty, + by Ty, n >0,
th = (1 =)o + 1Ty, n >0,

Cn=1{2€C:|lyn— 2| <1 = (vn — bn)an

—(2an + bn)vn — 20, B (1 4+ v0)ll|zn — 2|} N A, n >0,
Qn={2€Qn_1:(rn— 2,20 — ) >0}, n>1,
Tpt+1 = Pcannxm

converges strongly to Pr(r)yzo-

Proof. Take T,, = T, L, = 1 in Theorem in this case, C), is convex and
closed and , for all n > 0, by using Theorem [2.5] we obtain Corollary 2.7 Take
T, =T, L, =1 in Theorem in this case, C), is closed and convex, for all
n > 0, by using Theorem we obtain Corollary O
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Corollary 2.8. Assume that cn, Bn, Yn, an and b, € [0,1], ay + B, € [0,1] and
an + by, €1(0,1] for alln € N and 377 ((ay, + Bn) = 0o. Then {z,} generated
by

zo € C = Qo, arbitrarily,
Yn = (1 — Qp — Bn)zn + Tz, + BTy, n >0,
zn =1 —an — b))ty + a,Tt, + b, Ty, n >0,
tn = (1 = v)xn + VT Tn, n>0,

Cpon={2€C:|lyn—2 <[1 = (Yn — bn)an
Qn={2€Qn-1:(xy — 2,20 —x,) >0}, n>1,
Tn+1 = Pe,ng,, o,

converges strongly to Pp(Tyxo.

3. Applications
Here, we give an application of our result for the following case of finite family
of asymptotically quasi-nonexpansive mappings {7}, 7]:[:_01. Let
1T = p|| < kijlle —pl, Yo € C, p € F,
where F' is common fixed point set of {Tn}gz_ol,limj — ook; ; = 1 for all

0 < ¢ < N — 1. The finite family of asymptotically quasi-nonexpansive map-
pings {Tn}ﬁ;_o1 is uniformly L — Lipschitz, if

1T}z = T/y|l < Lisllz — yll, Yo,y € C
for alli€{0,1,2,.... N — 1}, j > 1, where L > 1.
Theorem 3.1. Let {Tn}nNz_ol : C' = C be a uniformly L-Lipschitz finit family of

asymptotically quasi-nonexpansive mappings with nonempty common fized point
set F'. Assume that cu,, Br, Yn, an and b, € [0,1], a,, + 5y, € [0,1] and a, +b,, €
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[0,1] for alln € N and Y- ,(an + Bn) = 0o. Then {x,} generated by

xo € C' = Qo, arbitrarily,
Yn = (1 — Qp — ﬁn)zn + anTl((n) Zn + 6n1—; (n)t n >0,
2n = (1 — an — b))ty + anT]((nn)t +b Tv]((:))xn, n >0,
ty, = (]- - fYn)l'n + ’YnTl((n))l'n, n >0,

Cp = {Z eC: ||yn - Z” < [1 + (kz(n)7](n)(1 — by — 29, — 2ay,

+3anYn + 2bpyn) + kz(n) ](n)( 3anYn + Yn — bnYn + an

+b,) + anvnki(n),j(n) + an + bp — anYn — bpyn — Doy,

+(ki(n),j(n)(1 —an — by — 290 + 24070 — bnYn)

k3 i ny (—@n T+ ) = buyn = anYn — bn + an

+Yn — )671 ( i(n), (n)(l —2a, — 2b ) + Cl,nkl(n) i(n)

+bp — an — 1)V — an — b + Ki(n), j(n) (@n + bp)]

|z — 2]} N A, n >0,
Qn=1{2€Qn-1:(xn—2z,x0—1xp,) >0}, n>1,
Tn+1 = Pese,ng,, To,

converges strongly to Prxg, where n = (j(n) — 1)N +i(n) for all n > 0.

Proof. We can drive the prove from the following two conclusions.
conclusionl. {T,]LV:_Ol};’f:O is a uniformly closed asymptotically family of count-
able quasi-L,,-Lipschitz mappings from C into itself.

conclusion2. F = ﬂﬁf:o F(T,) =N~ F(Tf((n))), where F(T) denotes the fixved

point set of the mappings T.
O

Corollary 3.2. LetT : C' — C be a L-Lipschitz asymptotically quasi-nonexpansive
mappings with nonempty common fixed point set F. Assume that an, Bn, Vn,
an and b, € [0,1], an + B € [0,1] and ayn, + b, € [0,1] for alln € N and
Soo o(an + Bn) = 0o. Then {x,} generated by

z9 € C = Qo, arbitrarily,
Yn = (1 — Op — Bn)zn + o, T2y, + 6nTntna n >0,
zn = (1 — an — bp)tn + an T, + b, T 2y, n >0,
t, = (1 —v)xn + Ty, n >0,

Cpn=1{2€C:|lyn— 2| <1+ (kn(l —byn — 27, — 2apn + 3anTn

+2bn7n) + ki(_?’an’yn + Y = bnYn + an + bn) + an’ynki

+an + by, — AnYn — bn’)’n - l)an + (kn(l —ap — by, — 2

+2an7n - bn’Yn) + k%(_an’}/n + ’Yn) - bn’)/n — apYn — by,

+an + Y0 — 1) By + (kn(1 = 2a, — 2b,) + ank? + by, — ap

—1)Yn — an — by + kn(an + by)]||lzn — 2[[} N A, n >0,
Qn=1{2€Qn_1:(xn—2,20—2,) >0}, n>1,
Tn+1 = Pesc,nq, To,
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converges strongly to Ppxg, where coC,, denotes the closed convez closure of C),
foralln>1, A={z€ H : |z — Prxo|| < 1}.

Proof. Take T,, = T in theorem we proved. O
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